These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37187175)

  • 1. On the noise generation and unsteady performance of combined heaving and pitching foils.
    Wagenhoffer N; Moored KW; Jaworski JW
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37187175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
    Techet AH
    J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of changing synchronization in propulsive performance of side-by-side pitching foils.
    Gungor A; Hemmati A
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33571986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase oscillations differently.
    Gungor A; Hemmati A
    Phys Rev E; 2020 Oct; 102(4-1):043104. PubMed ID: 33212661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the bending pattern of non-uniformly flexible pitching hydrofoils enhances propulsive efficiency.
    Han T; Mivehchi A; Kurt M; Moored KW
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 36065966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient cruising for swimming and flying animals is dictated by fluid drag.
    Floryan D; Van Buren T; Smits AJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8116-8118. PubMed ID: 29915088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of a pectoral fin during labriform swimming.
    Shoele K; Zhu Q
    J Exp Biol; 2010 Jun; 213(Pt 12):2038-47. PubMed ID: 20511517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of non-sinusoidal pitching motion on the propulsion performance of an oscillating foil.
    Qi Z; Zhai J; Li G; Peng J
    PLoS One; 2019; 14(7):e0218832. PubMed ID: 31260479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of complex driving motion on propulsion performance of a heaving flexible foil.
    Wang C; Tang H
    Bioinspir Biomim; 2018 Dec; 14(1):016011. PubMed ID: 30511653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling and pitching oscillating foil propulsion in ground effect.
    Perkins M; Elles D; Badlissi G; Mivehchi A; Dahl J; Licht S
    Bioinspir Biomim; 2017 Nov; 13(1):016003. PubMed ID: 28869422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow Interactions Between Low Aspect Ratio Hydrofoils in In-line and Staggered Arrangements.
    Kurt M; Eslam Panah A; Moored KW
    Biomimetics (Basel); 2020 Mar; 5(2):. PubMed ID: 32244490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study of trailing edge noise from a heaving airfoil.
    Zhou T; Zhang X; Zhong S
    J Acoust Soc Am; 2020 Jun; 147(6):4020. PubMed ID: 32611152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.