BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37187334)

  • 1. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles.
    Ren H; Ni J; Shen M; Zhou D; Sun F; Loke Show P
    Bioresour Technol; 2023 Aug; 382():129176. PubMed ID: 37187334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation.
    Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2019 Feb; 273():592-598. PubMed ID: 30481658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO
    Comitre AA; Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2021 Feb; 321():124452. PubMed ID: 33310412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and biological fixation of CO
    da Silva Vaz B; Alberto Vieira Costa J; Greque de Morais M
    Int J Biol Macromol; 2020 May; 151():1332-1339. PubMed ID: 31758984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium.
    Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F
    J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.
    Chang HX; Huang Y; Fu Q; Liao Q; Zhu X
    Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Possibility of Deploying CO
    Zieliński M; Kazimierowicz J; Dębowski M
    Front Biosci (Elite Ed); 2023 Jan; 15(1):3. PubMed ID: 36959103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Sadeghizadeh A; Farhad Dad F; Moghaddasi L; Rahimi R
    Bioresour Technol; 2017 Nov; 243():441-447. PubMed ID: 28688327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.
    Adamczyk M; Lasek J; Skawińska A
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1248-61. PubMed ID: 27052208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.
    Hu X; Zhou J; Liu G; Gui B
    J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism.
    Wei S; Li F; Zhu N; Wei X; Wu P; Dang Z
    Bioresour Technol; 2023 Sep; 383():129195. PubMed ID: 37207699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofixation of Air Emissions and Biomass Valorization-Evaluation of Microalgal Biotechnology.
    Biscaia WL; Miyawaki B; de Mello TC; de Vasconcelos EC; de Arruda NMB; Maranho LT
    Appl Biochem Biotechnol; 2022 Sep; 194(9):4033-4048. PubMed ID: 35587326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor.
    Zheng M; Dai J; Ji X; Li D; He Y; Wang M; Huang J; Chen B
    Bioresour Technol; 2021 Nov; 340():125703. PubMed ID: 34371337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of dual strain microalgae cultivation system for the direct carbon dioxide utilization of power plant flue gas.
    Cho JM; Oh YK; Lee J; Chang YK; Park WK
    Bioresour Technol; 2024 Feb; 393():130051. PubMed ID: 37995873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating eco-technological approach for textile dye effluent treatment and carbon dioxide capturing from unicellular microalga
    Tamil Selvan S; Dakshinamoorthi BM; Chandrasekaran R; Muthusamy S; Ramamurthy D; Balasundaram S
    Int J Phytoremediation; 2023; 25(4):466-482. PubMed ID: 35790387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus.
    Chaudhary R; Dikshit AK; Tong YW
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of CO2 fixation by microalgae in a closed raceway pond.
    Li S; Luo S; Guo R
    Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.