BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37187382)

  • 1. Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation.
    Niu C; Weng L; Lian W; Zhang R; Ma J; Chen Y
    Chemosphere; 2023 Aug; 333():138927. PubMed ID: 37187382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting pathways of carbon sequestration in paddy and upland soils.
    Chen X; Hu Y; Xia Y; Zheng S; Ma C; Rui Y; He H; Huang D; Zhang Z; Ge T; Wu J; Guggenberger G; Kuzyakov Y; Su Y
    Glob Chang Biol; 2021 Jun; 27(11):2478-2490. PubMed ID: 33713528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.
    Song XY; Spaccini R; Pan G; Piccolo A
    Sci Total Environ; 2013 Aug; 458-460():319-30. PubMed ID: 23669578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global pattern of organic carbon pools in forest soils.
    Zhang Y; Guo X; Chen L; Kuzyakov Y; Wang R; Zhang H; Han X; Jiang Y; Sun OJ
    Glob Chang Biol; 2024 Jun; 30(6):e17386. PubMed ID: 38899550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and microbial evidence for different soil carbon sequestration after four-year successive biochar application in two different paddy soils.
    Bi Y; Cai S; Wang Y; Zhao X; Wang S; Xing G; Zhu Z
    Chemosphere; 2020 Sep; 254():126881. PubMed ID: 32957288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland.
    Soinne H; Hyyrynen M; Jokubė M; Keskinen R; Hyväluoma J; Pihlainen S; Hyytiäinen K; Miettinen A; Rasa K; Lemola R; Virtanen E; Heinonsalo J; Heikkinen J
    J Environ Manage; 2024 Feb; 352():119945. PubMed ID: 38215596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Responses of soil organic carbon content and fractions to land-use conversion from paddy field to upland].
    Huang S; Rui WY; Peng XX; Liu WR; Zhang WJ
    Huan Jing Ke Xue; 2009 Apr; 30(4):1146-51. PubMed ID: 19545021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Responses of Soil Organic Carbon Fractions to Land Use Types in Hilly Red Soil Regions, China].
    Zhang XF; Zheng SM; Xia YH; Hu YJ; Su YR; Chen XB
    Huan Jing Ke Xue; 2020 Mar; 41(3):1466-1473. PubMed ID: 32608650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis.
    Liu C; Lu M; Cui J; Li B; Fang C
    Glob Chang Biol; 2014 May; 20(5):1366-81. PubMed ID: 24395454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils.
    Begill N; Don A; Poeplau C
    Glob Chang Biol; 2023 Aug; 29(16):4662-4669. PubMed ID: 37271832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].
    Mao XL; Lu KP; Sun T; Zhang XK; He LZ; Wang HL
    Huan Jing Ke Xue; 2015 May; 36(5):1827-35. PubMed ID: 26314136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Change of organic carbon pools and the responses to soil warming during laboratory incubations under different temperatures of 3 kinds of paddy soils in Tai Lake Region, China].
    Zhou Y; Pan G; Li L; Zhang X; Zhang P
    Huan Jing Ke Xue; 2003 Jan; 24(1):46-51. PubMed ID: 12708288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rejuvenation of iron oxides enhances carbon sequestration by the 'iron gate' and 'enzyme latch' mechanisms in a rice-wheat cropping system.
    Jia Z; Huang X; Li L; Li T; Duan Y; Ling N; Yu G
    Sci Total Environ; 2022 Sep; 839():156209. PubMed ID: 35644381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of Chemical Distinction among Soil Humic Fractions Using Quantitative Solid-State
    Xu J; Zhao B; Li Z; Chu W; Mao J; Olk DC; Zhang J; Xin X; Wei W
    J Agric Food Chem; 2019 Jul; 67(29):8107-8118. PubMed ID: 31260291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].
    Huang J; Zhang YZ; Gao JS; Zhang WJ; Liu SJ
    Ying Yong Sheng Tai Xue Bao; 2015 Nov; 26(11):3373-80. PubMed ID: 26915193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Distribution and Dynamics of Cropland Soil Organic Carbon in Jianghan Plain: A Case Study of Qianjiang City].
    Wang YZ; Xiao HA; Zhou P; Tong CL; Ge TD; Zeng GJ; Wu JS
    Huan Jing Ke Xue; 2015 Sep; 36(9):3422-8. PubMed ID: 26717706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characteristics of humic substances in buried ancient paddy soils as revealed by
    Liu P; Zhou W; Cui H; Tan J; Cao S
    Environ Geochem Health; 2019 Dec; 41(6):2459-2472. PubMed ID: 31016606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enrichment Characteristics of Heavy Metals in Particulate Organic Matter of Purple Paddy Soil].
    Li QY; Zhao XL
    Huan Jing Ke Xue; 2017 May; 38(5):2146-2153. PubMed ID: 29965123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.