These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37187615)

  • 1. EdeepSADPr: an extensive deep-learning architecture for prediction of the
    Jiang H; Shang S; Sha Y; Zhang L; He N; Li L
    Front Cell Dev Biol; 2023; 11():1149535. PubMed ID: 37187615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepSADPr: A hybrid-learning architecture for serine ADP-ribosylation site prediction.
    Sha Y; Ma C; Wei X; Liu Y; Chen Y; Li L
    Methods; 2022 Jul; 203():575-583. PubMed ID: 34560250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepCSO: A Deep-Learning Network Approach to Predicting Cysteine S-Sulphenylation Sites.
    Lyu X; Li S; Jiang C; He N; Chen Z; Zou Y; Li L
    Front Cell Dev Biol; 2020; 8():594587. PubMed ID: 33335901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles.
    Wang M; Jiang Y; Xu X
    Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics.
    Hendriks IA; Larsen SC; Nielsen ML
    Mol Cell Proteomics; 2019 May; 18(5):1010-1026. PubMed ID: 30798302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation.
    Larsen SC; Hendriks IA; Lyon D; Jensen LJ; Nielsen ML
    Cell Rep; 2018 Aug; 24(9):2493-2505.e4. PubMed ID: 30157440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADPredict: ADP-ribosylation site prediction based on physicochemical and structural descriptors.
    Lo Monte M; Manelfi C; Gemei M; Corda D; Beccari AR
    Bioinformatics; 2018 Aug; 34(15):2566-2574. PubMed ID: 29554239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADPRtool: A novel predicting model for identification of ASP-ADP-Ribosylation sites of human proteins.
    Liu J; Han J; Lv H
    J Bioinform Comput Biol; 2015 Aug; 13(4):1550015. PubMed ID: 26017462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites.
    Thapa N; Chaudhari M; Iannetta AA; White C; Roy K; Newman RH; Hicks LM; Kc DB
    Sci Rep; 2021 Jun; 11(1):12550. PubMed ID: 34131195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ResSUMO: A Deep Learning Architecture Based on Residual Structure for Prediction of Lysine SUMOylation Sites.
    Zhu Y; Liu Y; Chen Y; Li L
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation.
    Yao H; Li A; Wang M
    Biomed Res Int; 2015; 2015():279823. PubMed ID: 26601103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VPTMdb: a viral posttranslational modification database.
    Xiang Y; Zou Q; Zhao L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33094321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational Modification Crosstalk and Hotspots in Sirtuin Interactors Implicated in Cardiovascular Diseases.
    Aggarwal S; Banerjee SK; Talukdar NC; Yadav AK
    Front Genet; 2020; 11():356. PubMed ID: 32425973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepKhib: A Deep-Learning Framework for Lysine 2-Hydroxyisobutyrylation Sites Prediction.
    Zhang L; Zou Y; He N; Chen Y; Chen Z; Li L
    Front Cell Dev Biol; 2020; 8():580217. PubMed ID: 33015075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.