These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3718766)

  • 1. Ammonia detoxification by accelerated oxidation of branched chain amino acids in brains of acute hepatic failure rats.
    Watanabe A; Shiota T; Takei N; Fujiwara M; Nagashima H
    Biochem Med Metab Biol; 1986 Jun; 35(3):367-75. PubMed ID: 3718766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated leucine decarboxylation in the rat brain in relation to increased blood ammonia levels during acute hepatic failure.
    Shiota T
    Acta Med Okayama; 1984 Jun; 38(3):219-25. PubMed ID: 6464803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitatory and inhibitory amino acid neurotransmitters and ammonia metabolism in hepatic failure rats.
    Watanabe A; Shiota T; Takei N; Nagashima H
    Res Exp Med (Berl); 1985; 185(5):399-404. PubMed ID: 2865779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched chain amino acid transaminase and branched chain alpha-ketoacid dehydrogenase activity in the brain, liver and skeletal muscle of acute hepatic failure rats.
    Takei N
    Acta Med Okayama; 1985 Feb; 39(1):1-10. PubMed ID: 3984777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effects of decreased glutamine supply on protein and amino acid metabolism in hepatic tissue: a study using isolated perfused rat liver.
    Holecek M; Rysava R; Safranek R; Kadlcikova J; Sprongl L
    Metabolism; 2003 Aug; 52(8):1062-7. PubMed ID: 12898474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of methionine and ammonia-induced coma by intravenous infusion of a branched chain amino acid solution to rats with liver injury.
    Shiota T; Watanabe A; Higashi T; Nagashima H
    Acta Med Okayama; 1984 Oct; 38(5):479-82. PubMed ID: 6516898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle.
    Holecek M; Kandar R; Sispera L; Kovarik M
    Amino Acids; 2011 Feb; 40(2):575-84. PubMed ID: 20614225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats.
    Holecek M; Vodenicarovova M
    Int J Exp Pathol; 2016 Jun; 97(3):278-84. PubMed ID: 27381898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of branched-chain amino acids in starved rats: the role of hepatic tissue.
    Holecek M; Sprongl L; Tilser I
    Physiol Res; 2001; 50(1):25-33. PubMed ID: 11300224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of valine on 15N incorporation into serum and tissue protein and non-protein fractions following 15N-L-leucine administration to normal and liver-injured rats.
    Okita M; Watanabe A; Tsuji T
    J Nutr Sci Vitaminol (Tokyo); 1989 Dec; 35(6):559-67. PubMed ID: 2634737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respective contribution of plasma branched-chain amino acids and 2-keto acids to the hepatic metabolism of the carbon moiety of branched-chain amino acids in fed rats.
    Demigné C; Rémésy C; Fafournoux P
    J Nutr; 1986 Nov; 116(11):2201-8. PubMed ID: 3794828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine metabolism in rat liver after a bolus injection of endotoxin.
    Holecek M; Sprongl L; Tichý M; Pecka M
    Metabolism; 1998 Jun; 47(6):681-5. PubMed ID: 9627366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of branched-chain amino acid on 15N incorporation into liver and skeletal muscle proteins following [15N]-ammonium chloride administration to carbon tetrachloride-intoxicated rats.
    Okita M; Watanabe A; Tsuji T
    J Nutr Sci Vitaminol (Tokyo); 1988 Feb; 34(1):85-96. PubMed ID: 3392611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in mitochondrial branched-chain amino acid metabolism in brain in acute hyperammonemic states.
    Alexander J; Murthy CR
    Neurosci Lett; 1993 Jan; 149(2):221-4. PubMed ID: 8474697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of branched-chain amino acids on muscles under hyperammonemic conditions.
    Holeček M; Vodeničarovová M
    J Physiol Biochem; 2018 Nov; 74(4):523-530. PubMed ID: 30058052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.
    Zheng L; Zuo F; Zhao S; He P; Wei H; Xiang Q; Pang J; Peng J
    Br J Nutr; 2017 Apr; 117(7):911-922. PubMed ID: 28446262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proceedings: Ammonia and amino acids in the brain of the rat with chronic hepatic failure.
    Van Leuven F; Weyne J
    Arch Int Physiol Biochim; 1974 Oct; 82(4):739-41. PubMed ID: 4141425
    [No Abstract]   [Full Text] [Related]  

  • 18. Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis.
    Häussinger D; Gerok W
    Chem Biol Interact; 1984 Feb; 48(2):191-4. PubMed ID: 6697421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats.
    Holecek M; Vodenicarovova M; Siman P
    Int J Exp Pathol; 2017 Jun; 98(3):127-133. PubMed ID: 28621016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ammonia in the pathogenesis of brain edema.
    Fujiwara M
    Acta Med Okayama; 1986 Dec; 40(6):313-20. PubMed ID: 3825594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.