These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37188006)

  • 1. Non-human primate models and systems for gait and neurophysiological analysis.
    Liang F; Yu S; Pang S; Wang X; Jie J; Gao F; Song Z; Li B; Liao WH; Yin M
    Front Neurosci; 2023; 17():1141567. PubMed ID: 37188006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane.
    Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S
    Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combination of brain-computer interfaces and artificial intelligence: applications and challenges.
    Zhang X; Ma Z; Zheng H; Li T; Chen K; Wang X; Liu C; Xu L; Wu X; Lin D; Lin H
    Ann Transl Med; 2020 Jun; 8(11):712. PubMed ID: 32617332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis-implications for brain-computer interfacing.
    Kellmeyer P; Grosse-Wentrup M; Schulze-Bonhage A; Ziemann U; Ball T
    J Neural Eng; 2018 Aug; 15(4):041003. PubMed ID: 29676287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis.
    Bai Z; Fong KNK; Zhang JJ; Chan J; Ting KH
    J Neuroeng Rehabil; 2020 Apr; 17(1):57. PubMed ID: 32334608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-gaze independent EEG-based brain-computer interfaces for communication.
    Riccio A; Mattia D; Simione L; Olivetti M; Cincotti F
    J Neural Eng; 2012 Aug; 9(4):045001. PubMed ID: 22831893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interfaces as new brain output pathways.
    Wolpaw JR
    J Physiol; 2007 Mar; 579(Pt 3):613-9. PubMed ID: 17255164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual and auditory brain-computer interfaces.
    Gao S; Wang Y; Gao X; Hong B
    IEEE Trans Biomed Eng; 2014 May; 61(5):1436-47. PubMed ID: 24759277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.
    Goetz L; Piallat B; Bhattacharjee M; Mathieu H; David O; Chabardès S
    J Neurosci; 2016 May; 36(18):4917-29. PubMed ID: 27147647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurobionics and the brain-computer interface: current applications and future horizons.
    Rosenfeld JV; Wong YT
    Med J Aust; 2017 May; 206(8):363-368. PubMed ID: 28446119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis.
    Chaudhary U; Mrachacz-Kersting N; Birbaumer N
    J Physiol; 2021 May; 599(9):2351-2359. PubMed ID: 32045022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human visual skills for brain-computer interface use: a tutorial.
    Fried-Oken M; Kinsella M; Peters B; Eddy B; Wojciechowski B
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):799-809. PubMed ID: 32476516
    [No Abstract]   [Full Text] [Related]  

  • 19. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments.
    Schudlo LC; Chau T
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.