BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37188180)

  • 1. Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer.
    Chung SY; Chang JS; Kim YB
    Front Oncol; 2023; 13():1119008. PubMed ID: 37188180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer.
    Wang J; Chen Y; Xie H; Luo L; Tang Q
    Sci Rep; 2022 Aug; 12(1):13650. PubMed ID: 35953516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow.
    Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762
    [No Abstract]   [Full Text] [Related]  

  • 5. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients.
    Wang Z; Chang Y; Peng Z; Lv Y; Shi W; Wang F; Pei X; Xu XG
    J Appl Clin Med Phys; 2020 Dec; 21(12):272-279. PubMed ID: 33238060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases.
    Zhong Y; Yang Y; Fang Y; Wang J; Hu W
    Front Oncol; 2021; 11():638197. PubMed ID: 34026615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic contouring system for cervical cancer using convolutional neural networks.
    Rhee DJ; Jhingran A; Rigaud B; Netherton T; Cardenas CE; Zhang L; Vedam S; Kry S; Brock KK; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    Med Phys; 2020 Nov; 47(11):5648-5658. PubMed ID: 32964477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning.
    Palazzo G; Mangili P; Deantoni C; Fodor A; Broggi S; Castriconi R; Ubeira Gabellini MG; Del Vecchio A; Di Muzio NG; Fiorino C
    Phys Imaging Radiat Oncol; 2023 Oct; 28():100501. PubMed ID: 37920450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer.
    Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y
    Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457
    [No Abstract]   [Full Text] [Related]  

  • 15. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy.
    Abdulkadir Y; Luximon D; Morris E; Chow P; Kishan AU; Mikaeilian A; Lamb JM
    Med Phys; 2023 Oct; 50(10):5969-5977. PubMed ID: 37646527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy.
    Liu Z; Liu X; Guan H; Zhen H; Sun Y; Chen Q; Chen Y; Wang S; Qiu J
    Radiother Oncol; 2020 Dec; 153():172-179. PubMed ID: 33039424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Feasibility Study of Deep Learning-Based Auto-Segmentation Directly Used in VMAT Planning Design and Optimization for Cervical Cancer.
    Chen A; Chen F; Li X; Zhang Y; Chen L; Chen L; Zhu J
    Front Oncol; 2022; 12():908903. PubMed ID: 35719942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.