These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 37188688)
1. RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome. Sambri I; Ferniani M; Campostrini G; Testa M; Meraviglia V; de Araujo MEG; Dokládal L; Vilardo C; Monfregola J; Zampelli N; Vecchio Blanco FD; Torella A; Ruosi C; Fecarotta S; Parenti G; Staiano L; Bellin M; Huber LA; De Virgilio C; Trepiccione F; Nigro V; Ballabio A Nat Commun; 2023 May; 14(1):2775. PubMed ID: 37188688 [TBL] [Abstract][Full Text] [Related]
2. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Paquette M; El-Houjeiri L; C Zirden L; Puustinen P; Blanchette P; Jeong H; Dejgaard K; Siegel PM; Pause A Autophagy; 2021 Dec; 17(12):3957-3975. PubMed ID: 33734022 [TBL] [Abstract][Full Text] [Related]
3. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome. Napolitano G; Di Malta C; Esposito A; de Araujo MEG; Pece S; Bertalot G; Matarese M; Benedetti V; Zampelli A; Stasyk T; Siciliano D; Venuta A; Cesana M; Vilardo C; Nusco E; Monfregola J; Calcagnì A; Di Fiore PP; Huber LA; Ballabio A Nature; 2020 Sep; 585(7826):597-602. PubMed ID: 32612235 [TBL] [Abstract][Full Text] [Related]
4. Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. Li K; Wada S; Gosis BS; Thorsheim C; Loose P; Arany Z PLoS Biol; 2022 Mar; 20(3):e3001594. PubMed ID: 35358174 [TBL] [Abstract][Full Text] [Related]
5. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. Nezich CL; Wang C; Fogel AI; Youle RJ J Cell Biol; 2015 Aug; 210(3):435-50. PubMed ID: 26240184 [TBL] [Abstract][Full Text] [Related]
6. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Alesi N; Akl EW; Khabibullin D; Liu HJ; Nidhiry AS; Garner ER; Filippakis H; Lam HC; Shi W; Viswanathan SR; Morroni M; Ferguson SM; Henske EP Nat Commun; 2021 Jul; 12(1):4245. PubMed ID: 34253722 [TBL] [Abstract][Full Text] [Related]
7. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Gollwitzer P; Grützmacher N; Wilhelm S; Kümmel D; Demetriades C Nat Cell Biol; 2022 Sep; 24(9):1394-1406. PubMed ID: 36097072 [TBL] [Abstract][Full Text] [Related]
8. MiT/TFE family members suppress L-leucyl-L-leucine methyl ester-induced cell death. Yabuki A; Miyara M; Umeda-Miyara K; Takao S; Sanoh S; Kotake Y J Toxicol Sci; 2021; 46(3):143-156. PubMed ID: 33642520 [TBL] [Abstract][Full Text] [Related]
9. AKT inhibition-mediated dephosphorylation of TFE3 promotes overactive autophagy independent of MTORC1 in cadmium-exposed bone mesenchymal stem cells. Pi H; Li M; Zou L; Yang M; Deng P; Fan T; Liu M; Tian L; Tu M; Xie J; Chen M; Li H; Xi Y; Zhang L; He M; Lu Y; Chen C; Zhang T; Wang Z; Yu Z; Gao F; Zhou Z Autophagy; 2019 Apr; 15(4):565-582. PubMed ID: 30324847 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Wang H; Wang N; Xu D; Ma Q; Chen Y; Xu S; Xia Q; Zhang Y; Prehn JHM; Wang G; Ying Z Autophagy; 2020 Sep; 16(9):1683-1696. PubMed ID: 31826695 [TBL] [Abstract][Full Text] [Related]
11. The GATOR2 complex maintains lysosomal-autophagic function by inhibiting the protein degradation of MiT/TFEs. Yang S; Ting CY; Lilly MA Mol Cell; 2024 Feb; 84(4):727-743.e8. PubMed ID: 38325378 [TBL] [Abstract][Full Text] [Related]
13. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution. Tol MJ; van der Lienden MJC; Gabriel TL; Hagen JJ; Scheij S; Veenendaal T; Klumperman J; Donker-Koopman WE; Verhoeven AJ; Overkleeft H; Aerts JM; Argmann CA; van Eijk M Autophagy; 2018; 14(3):437-449. PubMed ID: 29455584 [TBL] [Abstract][Full Text] [Related]
14. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. Cinque L; De Leonibus C; Iavazzo M; Krahmer N; Intartaglia D; Salierno FG; De Cegli R; Di Malta C; Svelto M; Lanzara C; Maddaluno M; Wanderlingh LG; Huebner AK; Cesana M; Bonn F; Polishchuk E; Hübner CA; Conte I; Dikic I; Mann M; Ballabio A; Sacco F; Grumati P; Settembre C EMBO J; 2020 Sep; 39(17):e105696. PubMed ID: 32716134 [TBL] [Abstract][Full Text] [Related]
16. Multistep regulation of TFEB by MTORC1. Vega-Rubin-de-Celis S; Peña-Llopis S; Konda M; Brugarolas J Autophagy; 2017 Mar; 13(3):464-472. PubMed ID: 28055300 [TBL] [Abstract][Full Text] [Related]
17. Design and validation of a reporter mouse to study the dynamic regulation of TFEB and TFE3 activity through Brunialti E; Rizzi N; Pinto-Costa R; Villa A; Panzeri A; Meda C; Rebecchi M; Di Monte DA; Ciana P Autophagy; 2024 Aug; 20(8):1879-1894. PubMed ID: 38522425 [TBL] [Abstract][Full Text] [Related]
19. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Tan A; Prasad R; Lee C; Jho EH Cell Death Differ; 2022 Aug; 29(8):1433-1449. PubMed ID: 35739255 [TBL] [Abstract][Full Text] [Related]
20. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Wang S; Ni HM; Chao X; Wang H; Bridges B; Kumer S; Schmitt T; Mareninova O; Gukovskaya A; De Lisle RC; Ballabio A; Pacher P; Ding WX Autophagy; 2019 Nov; 15(11):1954-1969. PubMed ID: 30894069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]