These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37188729)
1. Classification of Amazonian fast-growing tree species and wood chemical determination by FTIR and multivariate analysis (PLS-DA, PLS). Javier-Astete R; Melo J; Jimenez-Davalos J; Zolla G Sci Rep; 2023 May; 13(1):7827. PubMed ID: 37188729 [TBL] [Abstract][Full Text] [Related]
2. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. Javier-Astete R; Jimenez-Davalos J; Zolla G PLoS One; 2021; 16(10):e0256559. PubMed ID: 34705842 [TBL] [Abstract][Full Text] [Related]
3. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Pizzo B; Pecoraro E; Alves A; Macchioni N; Rodrigues JC Talanta; 2015 Jan; 131():14-20. PubMed ID: 25281067 [TBL] [Abstract][Full Text] [Related]
4. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy. Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174 [TBL] [Abstract][Full Text] [Related]
5. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Combined with Chemometrics Methods for the Classification of Lingzhi Species. Wang YY; Li JQ; Liu HG; Wang YZ Molecules; 2019 Jun; 24(12):. PubMed ID: 31200472 [TBL] [Abstract][Full Text] [Related]
6. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. Labbé N; Harper D; Rials T; Elder T J Agric Food Chem; 2006 May; 54(10):3492-7. PubMed ID: 19127715 [TBL] [Abstract][Full Text] [Related]
8. The potential of Mid-Infrared spectroscopy for prediction of wood density and vulnerability to embolism in woody angiosperms. Savi T; Tintner J; Da Sois L; Grabner M; Petit G; Rosner S Tree Physiol; 2019 Mar; 39(3):503-510. PubMed ID: 30307571 [TBL] [Abstract][Full Text] [Related]
9. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology. Reyes-Rivera J; Canché-Escamilla G; Soto-Hernández M; Terrazas T PLoS One; 2015; 10(4):e0123919. PubMed ID: 25880223 [TBL] [Abstract][Full Text] [Related]
10. Length determination of vessel elements in tree trunks used for water and nutrient transport by Fourier transform Raman spectroscopy. Ona T; Ohshima J; Adachi K; Yokota S; Yoshizawa N Anal Bioanal Chem; 2004 Dec; 380(7-8):958-63. PubMed ID: 15700172 [TBL] [Abstract][Full Text] [Related]
11. Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Santoni I; Callone E; Sandak A; Sandak J; Dirè S Carbohydr Polym; 2015 Mar; 117():710-721. PubMed ID: 25498692 [TBL] [Abstract][Full Text] [Related]
12. Feasibility of near-infrared spectroscopy for on-line grading of sawn lumber. Fujimoto T; Kurata Y; Matsumoto K; Tsuchikawa S Appl Spectrosc; 2010 Jan; 64(1):92-9. PubMed ID: 20132603 [TBL] [Abstract][Full Text] [Related]
13. Use of multivariate NMR analysis in the content prediction of hemicellulose, cellulose and lignin in greenhouse crop residues. Aguilera-Sáez LM; Arrabal-Campos FM; Callejón-Ferre ÁJ; Suárez Medina MD; Fernández I Phytochemistry; 2019 Feb; 158():110-119. PubMed ID: 30502594 [TBL] [Abstract][Full Text] [Related]
14. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy. Wittner N; Slezsák J; Broos W; Geerts J; Gergely S; Vlaeminck SE; Cornet I Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121912. PubMed ID: 36174400 [TBL] [Abstract][Full Text] [Related]
15. A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics. Yuan L; Meng X; Xin K; Ju Y; Zhang Y; Yin C; Hu L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122120. PubMed ID: 36473296 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Hobro AJ; Kuligowski J; Döll M; Lendl B Anal Bioanal Chem; 2010 Nov; 398(6):2713-22. PubMed ID: 20882383 [TBL] [Abstract][Full Text] [Related]
17. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Özgenç Ö; Durmaz S; Boyaci IH; Eksi-Kocak H Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():395-400. PubMed ID: 27569772 [TBL] [Abstract][Full Text] [Related]
18. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy]. Jiang ZH; Fei BH; Yang Z Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS). Assis C; Ramos RS; Silva LA; Kist V; Barbosa MHP; Teófilo RF Appl Spectrosc; 2017 Aug; 71(8):2001-2012. PubMed ID: 28452227 [TBL] [Abstract][Full Text] [Related]
20. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology]. Du J; An D; Xia T; Huang YH; Li HC; Zhang YW Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3207-11. PubMed ID: 24611371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]