These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37188731)

  • 1. A general model to predict small molecule substrates of enzymes based on machine and deep learning.
    Kroll A; Ranjan S; Engqvist MKM; Lercher MJ
    Nat Commun; 2023 May; 14(1):2787. PubMed ID: 37188731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning.
    Kroll A; Rousset Y; Hu XP; Liebrand NA; Lercher MJ
    Nat Commun; 2023 Jul; 14(1):4139. PubMed ID: 37438349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multimodal Transformer Network for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-substrate relationships.
    Kroll A; Ranjan S; Lercher MJ
    PLoS Comput Biol; 2024 May; 20(5):e1012100. PubMed ID: 38768223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer learning for small molecule retention predictions.
    Osipenko S; Botashev K; Nikolaev E; Kostyukevich Y
    J Chromatogr A; 2021 May; 1644():462119. PubMed ID: 33845426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases.
    Mou Z; Eakes J; Cooper CJ; Foster CM; Standaert RF; Podar M; Doktycz MJ; Parks JM
    Proteins; 2021 Mar; 89(3):336-347. PubMed ID: 33118210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions.
    Watanabe N; Yamamoto M; Murata M; Vavricka CJ; Ogino C; Kondo A; Araki M
    J Phys Chem B; 2022 Sep; 126(36):6762-6770. PubMed ID: 36053051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steroid identification via deep learning retention time predictions and two-dimensional gas chromatography-high resolution mass spectrometry.
    Randazzo GM; Bileck A; Danani A; Vogt B; Groessl M
    J Chromatogr A; 2020 Feb; 1612():460661. PubMed ID: 31708215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Property Relationships and Machine Learning Models for Addressing CYP3A4-Mediated Victim Drug-Drug Interaction Risk in Drug Discovery.
    Hu B; Zhou X; Mohutsky MA; Desai PV
    Mol Pharm; 2020 Sep; 17(9):3600-3608. PubMed ID: 32794756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic
    Robinson SL; Terlouw BR; Smith MD; Pidot SJ; Stinear TP; Medema MH; Wackett LP
    J Biol Chem; 2020 Oct; 295(44):14826-14839. PubMed ID: 32826316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IGPred-HDnet: Prediction of Immunoglobulin Proteins Using Graphical Features and the Hierarchal Deep Learning-Based Approach.
    Ali Z; Alturise F; Alkhalifah T; Khan YD
    Comput Intell Neurosci; 2023; 2023():2465414. PubMed ID: 36744119
    [No Abstract]   [Full Text] [Related]  

  • 15. A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction.
    Xu H; Zheng Q; Zhu J; Xie Z; Cheng H; Li P; Ji Y
    Dis Markers; 2022; 2022():7593750. PubMed ID: 35990251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.
    Mishra NK; Chang J; Zhao PX
    PLoS One; 2014; 9(6):e100278. PubMed ID: 24968309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein.
    Bikadi Z; Hazai I; Malik D; Jemnitz K; Veres Z; Hari P; Ni Z; Loo TW; Clarke DM; Hazai E; Mao Q
    PLoS One; 2011; 6(10):e25815. PubMed ID: 21991360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProtEC: A Transformer Based Deep Learning System for Accurate Annotation of Enzyme Commission Numbers.
    Tamir A; Salem M; Yuan JS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3691-3702. PubMed ID: 37665714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving autocoding performance of rare categories in injury classification: Is more training data or filtering the solution?
    Nanda G; Vallmuur K; Lehto M
    Accid Anal Prev; 2018 Jan; 110():115-127. PubMed ID: 29127808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.