These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37188787)

  • 21. An experimental analysis and comparison of three rhythms of movements in bean (Phaseolus vulgaris L.).
    Millet B; Botton AM; Hayoum C; Koukkari WL
    Chronobiol Int; 1988; 5(3):187-93. PubMed ID: 3219754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The geometry of the compound leaf plays a significant role in the leaf movement of Medicago truncatula modulated by mtdwarf4a.
    Zhao W; Bai Q; Zhao B; Wu Q; Wang C; Liu Y; Yang T; Liu Y; He H; Du S; Tadege M; He L; Chen J
    New Phytol; 2021 Apr; 230(2):475-484. PubMed ID: 33458826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion Channels Regulate Nyctinastic Leaf Opening in Samanea saman.
    Oikawa T; Ishimaru Y; Munemasa S; Takeuchi Y; Washiyama K; Hamamoto S; Yoshikawa N; Mutara Y; Uozumi N; Ueda M
    Curr Biol; 2018 Jul; 28(14):2230-2238.e7. PubMed ID: 29983317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the Dual Functionality of Plant Pulvini Using a Physical Modeling Approach.
    Sleboda DA
    Integr Comp Biol; 2023 Dec; 63(6):1331-1339. PubMed ID: 37127409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanics of Reversible Deformation during Leaf Movement and Regulation of Pulvinus Development in Legumes.
    Nakata MT; Takahara M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances on bioorganic chemistry of plant metabolites controlling nyctinasty.
    Nakamura Y; Manabe Y; Inomata S; Ueda M
    Chem Rec; 2010 Apr; 10(2):70-9. PubMed ID: 20349506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemistry and Biology of Plant Leaf Movements.
    Ueda M; Yamamura S
    Angew Chem Int Ed Engl; 2000 Apr; 39(8):1400-1414. PubMed ID: 10777626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ.
    Moshelion M; Becker D; Czempinski K; Mueller-Roeber B; Attali B; Hedrich R; Moran N
    Plant Physiol; 2002 Feb; 128(2):634-42. PubMed ID: 11842166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformation and mechanics of a pulvinus-inspired material.
    Tadrist L; Mammadi Y; Diperi J; Linares JM
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35944519
    [No Abstract]   [Full Text] [Related]  

  • 30. 12-Hydroxyjasmonic acid glucoside causes leaf-folding of Samanea saman through ROS accumulation.
    Yang G; Ishimaru Y; Hoshino S; Muraoka Y; Uozumi N; Ueda M
    Sci Rep; 2022 May; 12(1):7232. PubMed ID: 35508503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement.
    Satter RL; Geballe GT; Applewhite PB; Galston AW
    J Gen Physiol; 1974 Oct; 64(4):413-30. PubMed ID: 4424264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous analysis of shape and internal structure of a curved Hibiscus cannabinus pulvinus: X-ray microtomography and semi-automated quantification.
    Nakata MT; Takahara M; Yamada T; Demura T
    J Plant Res; 2024 Jan; 137(1):79-94. PubMed ID: 37812342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-dependent phases of the circadian clock and the clock-controlled leaf movement in Phaseolus coccineus L.
    Mayer WE
    Planta; 1981 Jul; 152(4):292-301. PubMed ID: 24301022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanics of circadian pulvini movements in Phaseolus coccineus L. : Shape and arrangement of motor cells, micellation of motor cell walls, and bulk moduli of extensibility ([Formula: see text]).
    Mayer WE; Flach D; Raju MV; Starrach N; Wiech E
    Planta; 1985 Mar; 163(3):381-90. PubMed ID: 24249410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the grapevine Shaker K
    Nieves-Cordones M; Andrianteranagna M; Cuéllar T; Chérel I; Gibrat R; Boeglin M; Moreau B; Paris N; Verdeil JL; Zimmermann S; Gaillard I
    New Phytol; 2019 Apr; 222(1):286-300. PubMed ID: 30735258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of the upper pulvinus in modern and fossil leaves of Cercis (Fabaceae).
    Owens S; Fields P; Ewers F
    Am J Bot; 1998 Feb; 85(2):273. PubMed ID: 21684911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cation Chelating Agents Affect Leaf Movement via Leakage and not by Inhibition of Contractile Proteins).
    Mayer WE; Flach D; Wiech E
    J Plant Physiol; 1985 Feb; 118(1):79-90. PubMed ID: 23195933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A touchy subject: Ca
    Bakshi A; Swanson SJ; Gilroy S
    Cell Calcium; 2023 Mar; 110():102695. PubMed ID: 36669253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation.
    Moshelion M; Becker D; Biela A; Uehlein N; Hedrich R; Otto B; Levi H; Moran N; Kaldenhoff R
    Plant Cell; 2002 Mar; 14(3):727-39. PubMed ID: 11910017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhythmic Leaf and Cotyledon Movement Analysis.
    Lou P; Greenham K; McClung CR
    Methods Mol Biol; 2022; 2494():125-134. PubMed ID: 35467204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.