These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37188960)

  • 1. Single-cell multi-omics in the medicinal plant Catharanthus roseus.
    Li C; Wood JC; Vu AH; Hamilton JP; Rodriguez Lopez CE; Payne RME; Serna Guerrero DA; Gase K; Yamamoto K; Vaillancourt B; Caputi L; O'Connor SE; Robin Buell C
    Nat Chem Biol; 2023 Aug; 19(8):1031-1041. PubMed ID: 37188960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental Methylome of the Medicinal Plant
    Dugé de Bernonville T; Maury S; Delaunay A; Daviaud C; Chaparro C; Tost J; O'Connor SE; Courdavault V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825765
    [No Abstract]   [Full Text] [Related]  

  • 3. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Kidd T; Easson ML; Qu Y; De Luca V
    Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus.
    Van Moerkercke A; Steensma P; Gariboldi I; Espoz J; Purnama PC; Schweizer F; Miettinen K; Vanden Bossche R; De Clercq R; Memelink J; Goossens A
    Plant J; 2016 Oct; 88(1):3-12. PubMed ID: 27342401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.
    Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA
    Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism.
    Guedes JG; Ribeiro R; Carqueijeiro I; Guimarães AL; Bispo C; Archer J; Azevedo H; Fonseca NA; Sottomayor M
    J Exp Bot; 2024 Jan; 75(1):274-299. PubMed ID: 37804484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus.
    Kumar SR; Rai A; Bomzan DP; Kumar K; Hemmerlin A; Dwivedi V; Godbole RC; Barvkar V; Shanker K; Shilpashree HB; Bhattacharya A; Smitha AR; Hegde N; Nagegowda DA
    Plant J; 2020 Jul; 103(1):248-265. PubMed ID: 32064705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Patra B; Pattanaik S; Schluttenhofer C; Yuan L
    New Phytol; 2018 Mar; 217(4):1566-1581. PubMed ID: 29178476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates.
    Edge A; Qu Y; Easson MLAE; Thamm AMK; Kim KH; De Luca V
    Planta; 2018 Jan; 247(1):155-169. PubMed ID: 28894945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids.
    Carqueijeiro I; Dugé de Bernonville T; Lanoue A; Dang TT; Teijaro CN; Paetz C; Billet K; Mosquera A; Oudin A; Besseau S; Papon N; Glévarec G; Atehortùa L; Clastre M; Giglioli-Guivarc'h N; Schneider B; St-Pierre B; Andrade RB; O'Connor SE; Courdavault V
    Plant J; 2018 May; 94(3):469-484. PubMed ID: 29438577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome.
    Dugé de Bernonville T; Foureau E; Parage C; Lanoue A; Clastre M; Londono MA; Oudin A; Houillé B; Papon N; Besseau S; Glévarec G; Atehortùa L; Giglioli-Guivarc'h N; St-Pierre B; De Luca V; O'Connor SE; Courdavault V
    BMC Genomics; 2015 Aug; 16(1):619. PubMed ID: 26285573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-seq Analysis of Monoterpene Indole Alkaloid Biosynthetic Pathway Elucidation in Catharanthus roseus.
    Amor Stander E; Dugé de Bernonville T; Courdavault V
    Methods Mol Biol; 2022; 2505():113-130. PubMed ID: 35732941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TARGETing Transcriptional Regulation in the Medicinal Plant Catharanthus roseus.
    Guedes JG; Leitão C; Meireles C; Duarte P; Sottomayor M
    Methods Mol Biol; 2022; 2505():191-202. PubMed ID: 35732946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Discovery in Gelsemium Highlights Conserved Gene Clusters in Monoterpene Indole Alkaloid Biosynthesis.
    Franke J; Kim J; Hamilton JP; Zhao D; Pham GM; Wiegert-Rininger K; Crisovan E; Newton L; Vaillancourt B; Tatsis E; Buell CR; O'Connor SE
    Chembiochem; 2019 Jan; 20(1):83-87. PubMed ID: 30300974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More than a Catharanthus plant: A multicellular and pluri-organelle alkaloid-producing factory.
    Kulagina N; Méteignier LV; Papon N; O'Connor SE; Courdavault V
    Curr Opin Plant Biol; 2022 Jun; 67():102200. PubMed ID: 35339956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast.
    Mistry V; Darji S; Tiwari P; Sharma A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2337-2347. PubMed ID: 35333954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.
    Rai A; Smita SS; Singh AK; Shanker K; Nagegowda DA
    Mol Plant; 2013 Sep; 6(5):1531-49. PubMed ID: 23543438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus-Induced Gene Silencing as a Tool to Study Regulation of Alkaloid Biosynthesis in Medicinal Plants.
    Patra B; Liu Y; Singleton JJ; Singh SK; Pattanaik S; Yuan L
    Methods Mol Biol; 2022; 2469():155-164. PubMed ID: 35508837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses.
    Dugé de Bernonville T; Carqueijeiro I; Lanoue A; Lafontaine F; Sánchez Bel P; Liesecke F; Musset K; Oudin A; Glévarec G; Pichon O; Besseau S; Clastre M; St-Pierre B; Flors V; Maury S; Huguet E; O'Connor SE; Courdavault V
    Sci Rep; 2017 Jan; 7():40453. PubMed ID: 28094274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in
    Carqueijeiro I; Brown S; Chung K; Dang TT; Walia M; Besseau S; Dugé de Bernonville T; Oudin A; Lanoue A; Billet K; Munsch T; Koudounas K; Melin C; Godon C; Razafimandimby B; de Craene JO; Glévarec G; Marc J; Giglioli-Guivarc'h N; Clastre M; St-Pierre B; Papon N; Andrade RB; O'Connor SE; Courdavault V
    Plant Physiol; 2018 Aug; 177(4):1473-1486. PubMed ID: 29934299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.