These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 37189058)
1. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. Wysocka M; Wysocki O; Zufferey M; Landers D; Freitas A BMC Bioinformatics; 2023 May; 24(1):198. PubMed ID: 37189058 [TBL] [Abstract][Full Text] [Related]
2. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Salahuddin Z; Woodruff HC; Chatterjee A; Lambin P Comput Biol Med; 2022 Jan; 140():105111. PubMed ID: 34891095 [TBL] [Abstract][Full Text] [Related]
3. Deep learning in cancer diagnosis, prognosis and treatment selection. Tran KA; Kondrashova O; Bradley A; Williams ED; Pearson JV; Waddell N Genome Med; 2021 Sep; 13(1):152. PubMed ID: 34579788 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601 [TBL] [Abstract][Full Text] [Related]
5. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology. Hudson IL Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365 [TBL] [Abstract][Full Text] [Related]
6. A review on deep learning applications in highly multiplexed tissue imaging data analysis. Zidane M; Makky A; Bruhns M; Rochwarger A; Babaei S; Claassen M; Schürch CM Front Bioinform; 2023; 3():1159381. PubMed ID: 37564726 [TBL] [Abstract][Full Text] [Related]
7. Explainability of deep learning models in medical video analysis: a survey. Kolarik M; Sarnovsky M; Paralic J; Babic F PeerJ Comput Sci; 2023; 9():e1253. PubMed ID: 37346619 [TBL] [Abstract][Full Text] [Related]
8. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). Ma T; Zhang A BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727 [TBL] [Abstract][Full Text] [Related]
9. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810 [TBL] [Abstract][Full Text] [Related]
10. Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration. Yan H; Weng D; Li D; Gu Y; Ma W; Liu Q Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38670157 [TBL] [Abstract][Full Text] [Related]
11. A review of explainable AI in the satellite data, deep machine learning, and human poverty domain. Hall O; Ohlsson M; Rögnvaldsson T Patterns (N Y); 2022 Oct; 3(10):100600. PubMed ID: 36277818 [TBL] [Abstract][Full Text] [Related]
12. Network Approaches for Precision Oncology. Pai S Adv Exp Med Biol; 2022; 1361():199-213. PubMed ID: 35230690 [TBL] [Abstract][Full Text] [Related]
13. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Fortelny N; Bock C Genome Biol; 2020 Aug; 21(1):190. PubMed ID: 32746932 [TBL] [Abstract][Full Text] [Related]
14. Computational frameworks integrating deep learning and statistical models in mining multimodal omics data. Lac L; Leung CK; Hu P J Biomed Inform; 2024 Apr; 152():104629. PubMed ID: 38552994 [TBL] [Abstract][Full Text] [Related]
15. DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery. Lan W; Liao H; Chen Q; Zhu L; Pan Y; Chen YP Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678587 [TBL] [Abstract][Full Text] [Related]
16. Designing interpretable deep learning applications for functional genomics: a quantitative analysis. van Hilten A; Katz S; Saccenti E; Niessen WJ; Roshchupkin GV Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293804 [TBL] [Abstract][Full Text] [Related]
17. Precision oncology: a review to assess interpretability in several explainable methods. Gimeno M; Sada Del Real K; Rubio A Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37253690 [TBL] [Abstract][Full Text] [Related]
18. A review of mechanistic learning in mathematical oncology. Metzcar J; Jutzeler CR; Macklin P; Köhn-Luque A; Brüningk SC Front Immunol; 2024; 15():1363144. PubMed ID: 38533513 [TBL] [Abstract][Full Text] [Related]
19. Explainable deep learning in healthcare: A methodological survey from an attribution view. Jin D; Sergeeva E; Weng WH; Chauhan G; Szolovits P WIREs Mech Dis; 2022 May; 14(3):e1548. PubMed ID: 35037736 [TBL] [Abstract][Full Text] [Related]