BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 37189439)

  • 1. Multiomics Analysis Reveals Novel Genetic Determinants for Lens Differentiation, Structure, and Transparency.
    Disatham J; Brennan L; Cvekl A; Kantorow M
    Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiomic analysis implicates FOXO4 in genetic regulation of chick lens fiber cell differentiation.
    Brennan L; Disatham J; Menko AS; Kantorow M
    Dev Biol; 2023 Dec; 504():25-37. PubMed ID: 37722500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis.
    Disatham J; Brennan L; Chauss D; Kantorow J; Afzali B; Kantorow M
    BMC Genomics; 2021 Jul; 22(1):497. PubMed ID: 34215186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways.
    Zhao Y; Zheng D; Cvekl A
    Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens differentiation is characterized by stage-specific changes in chromatin accessibility correlating with differentiation state-specific gene expression.
    Disatham J; Chauss D; Gheyas R; Brennan L; Blanco D; Daley L; Menko AS; Kantorow M
    Dev Biol; 2019 Sep; 453(1):86-104. PubMed ID: 31136738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation.
    Chang W; Zhao Y; Rayêe D; Xie Q; Suzuki M; Zheng D; Cvekl A
    Epigenetics Chromatin; 2023 Jan; 16(1):4. PubMed ID: 36698218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation.
    Disatham J; Brennan L; Jiao X; Ma Z; Hejtmancik JF; Kantorow M
    Epigenetics Chromatin; 2022 Mar; 15(1):8. PubMed ID: 35246225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators.
    Sun J; Rockowitz S; Chauss D; Wang P; Kantorow M; Zheng D; Cvekl A
    Mol Vis; 2015; 21():955-73. PubMed ID: 26330747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Generation of Paired Single-Cell Multiomics Profiles by Deep Learning.
    Lan M; Zhang S; Gao L
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301169. PubMed ID: 37114830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology.
    Tangeman JA; Rebull SM; Grajales-Esquivel E; Weaver JM; Bendezu-Sayas S; Robinson ML; Lachke SA; Del Rio-Tsonis K
    Development; 2024 Jan; 151(1):. PubMed ID: 38180241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Znhit1 Regulates p21Cip1 to Control Mouse Lens Differentiation.
    Lu J; An J; Wang J; Cao X; Cao Y; Huang C; Jiao S; Yan D; Lin X; Zhou X
    Invest Ophthalmol Vis Sci; 2022 Apr; 63(4):18. PubMed ID: 35472217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Integration of HSV-1 Multi-omics Data.
    Friedel CC
    Methods Mol Biol; 2023; 2610():31-48. PubMed ID: 36534279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Nuclei from Flash-frozen Liver Tissue for Single-cell Multiomics.
    Strzelecki M; Yin K; Talavera-López C; Martinez-Jimenez CP
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36571404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiomics analysis of male infertility†.
    Wu X; Zhou L; Shi J; Cheng CY; Sun F
    Biol Reprod; 2022 Jul; 107(1):118-134. PubMed ID: 35639635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens.
    Cvekl A; Yang Y; Chauhan BK; Cveklova K
    Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers.
    Zhao Y; Wilmarth PA; Cheng C; Limi S; Fowler VM; Zheng D; David LL; Cvekl A
    Exp Eye Res; 2019 Feb; 179():32-46. PubMed ID: 30359574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The orchestration of mammalian tissue morphogenesis through a series of coherent feed-forward loops.
    Xie Q; Cvekl A
    J Biol Chem; 2011 Dec; 286(50):43259-71. PubMed ID: 21998302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain.
    Xie Q; Yang Y; Huang J; Ninkovic J; Walcher T; Wolf L; Vitenzon A; Zheng D; Götz M; Beebe DC; Zavadil J; Cvekl A
    PLoS One; 2013; 8(1):e54507. PubMed ID: 23342162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems biology of lens development: A paradigm for disease gene discovery in the eye.
    Anand D; Lachke SA
    Exp Eye Res; 2017 Mar; 156():22-33. PubMed ID: 26992779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.