These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37189574)
1. A Multi-Feature Fusion Framework for Automatic Skin Cancer Diagnostics. Bakheet S; Alsubai S; El-Nagar A; Alqahtani A Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189574 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM). R D S; A S Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
4. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms. Premaladha J; Ravichandran KS J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778 [TBL] [Abstract][Full Text] [Related]
5. Computer-Aided Diagnosis of Malignant Melanoma Using Gabor-Based Entropic Features and Multilevel Neural Networks. Bakheet S; Al-Hamadi A Diagnostics (Basel); 2020 Oct; 10(10):. PubMed ID: 33066517 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review. Baig R; Bibi M; Hamid A; Kausar S; Khalid S Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086 [TBL] [Abstract][Full Text] [Related]
7. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
8. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Maqsood S; Damaševičius R Neural Netw; 2023 Mar; 160():238-258. PubMed ID: 36701878 [TBL] [Abstract][Full Text] [Related]
9. COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images. Hasoon JN; Fadel AH; Hameed RS; Mostafa SA; Khalaf BA; Mohammed MA; Nedoma J Results Phys; 2021 Dec; 31():105045. PubMed ID: 34840938 [TBL] [Abstract][Full Text] [Related]
10. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Chatterjee S; Dey D; Munshi S Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550 [TBL] [Abstract][Full Text] [Related]
11. Proposing a hybrid technique of feature fusion and convolutional neural network for melanoma skin cancer detection. Rahman MM; Nasir MK; Nur-A-Alam M; Khan MSI J Pathol Inform; 2023; 14():100341. PubMed ID: 38028129 [TBL] [Abstract][Full Text] [Related]
12. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
13. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489 [TBL] [Abstract][Full Text] [Related]
14. Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines. Jaworek-Korjakowska J Biomed Res Int; 2016; 2016():4381972. PubMed ID: 27382567 [TBL] [Abstract][Full Text] [Related]
15. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection. Pennisi A; Bloisi DD; Nardi D; Giampetruzzi AR; Mondino C; Facchiano A Comput Med Imaging Graph; 2016 Sep; 52():89-103. PubMed ID: 27215953 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of cancerous from benign pigmented skin lesions based on multispectral autofluorescence lifetime imaging dermoscopy and machine learning. Vasanthakumari P; Romano RA; Rosa RGT; Salvio AG; Yakovlev V; Kurachi C; Hirshburg JM; Jo JA J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35701871 [TBL] [Abstract][Full Text] [Related]
17. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images. Oukil S; Kasmi R; Mokrani K; García-Zapirain B Skin Res Technol; 2022 Mar; 28(2):203-211. PubMed ID: 34779062 [TBL] [Abstract][Full Text] [Related]
18. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions. Serban ED; Farnetani F; Pellacani G; Constantin MM Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304 [TBL] [Abstract][Full Text] [Related]
19. Fusing fine-tuned deep features for skin lesion classification. Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354 [TBL] [Abstract][Full Text] [Related]
20. Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction. Rehman A; Khan MA; Mehmood Z; Saba T; Sardaraz M; Rashid M Microsc Res Tech; 2020 Apr; 83(4):410-423. PubMed ID: 31898863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]