These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 3718968)
1. Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface. Jacobs RE; White SH Biochemistry; 1986 May; 25(9):2605-12. PubMed ID: 3718968 [TBL] [Abstract][Full Text] [Related]
2. Lipid bilayer perturbations induced by simple hydrophobic peptides. Jacobs RE; White SH Biochemistry; 1987 Sep; 26(19):6127-34. PubMed ID: 3689766 [TBL] [Abstract][Full Text] [Related]
3. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Jacobs RE; White SH Biochemistry; 1989 Apr; 28(8):3421-37. PubMed ID: 2742845 [TBL] [Abstract][Full Text] [Related]
4. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling. Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900 [TBL] [Abstract][Full Text] [Related]
5. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113 [TBL] [Abstract][Full Text] [Related]
6. Role of peptide structure in lipid-peptide interactions: high-sensitivity differential scanning calorimetry and electron spin resonance studies of the structural properties of dimyristoylphosphatidylcholine membranes interacting with pentagastrin-related pentapeptides. Surewicz WK; Epand RM Biochemistry; 1985 Jun; 24(13):3135-44. PubMed ID: 2992577 [TBL] [Abstract][Full Text] [Related]
7. Interactions of the local anesthetic tetracaine with membranes containing phosphatidylcholine and cholesterol: a 2H NMR study. Auger M; Jarrell HC; Smith IC Biochemistry; 1988 Jun; 27(13):4660-7. PubMed ID: 3167009 [TBL] [Abstract][Full Text] [Related]
8. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
9. Role of peptide structure in lipid-peptide interactions: a fluorescence study of the binding of pentagastrin-related pentapeptides to phospholipid vesicles. Surewicz WK; Epand RM Biochemistry; 1984 Dec; 23(25):6072-7. PubMed ID: 6525344 [TBL] [Abstract][Full Text] [Related]
10. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. Otten D; Löbbecke L; Beyer K Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511 [TBL] [Abstract][Full Text] [Related]
11. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]
12. Binding of apolipoprotein A-I model peptides to lipid bilayers. Measurement of binding isotherms and peptide-lipid headgroup interactions. Spuhler P; Anantharamaiah GM; Segrest JP; Seelig J J Biol Chem; 1994 Sep; 269(39):23904-10. PubMed ID: 7929037 [TBL] [Abstract][Full Text] [Related]
13. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
14. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
15. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Andrushchenko VV; Vogel HJ; Prenner EJ Biochim Biophys Acta; 2007 Oct; 1768(10):2447-58. PubMed ID: 17597579 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic Insight on BioIL-Induced Structural Alterations in DMPC Lipid Bilayer. Shobhna ; Kumari M; Kashyap HK J Phys Chem B; 2021 Nov; 125(43):11955-11966. PubMed ID: 34672578 [TBL] [Abstract][Full Text] [Related]
17. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Henzler-Wildman KA; Martinez GV; Brown MF; Ramamoorthy A Biochemistry; 2004 Jul; 43(26):8459-69. PubMed ID: 15222757 [TBL] [Abstract][Full Text] [Related]
18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
19. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics. Pham QD; Topgaard D; Sparr E Langmuir; 2015 Oct; 31(40):11067-77. PubMed ID: 26375869 [TBL] [Abstract][Full Text] [Related]
20. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding. Müller E; Giehl A; Schwarzmann G; Sandhoff K; Blume A Biophys J; 1996 Sep; 71(3):1400-21. PubMed ID: 8874015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]