BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3718968)

  • 21. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers.
    Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organization of chlorophyll a in bilayer membranes. The chlorophyll a/dimyristoylphosphatidylcholine system.
    Dea P; Chan SI
    Biochim Biophys Acta; 1986 Jan; 854(1):1-8. PubMed ID: 3942715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charged or aromatic anchor residue dependence of transmembrane peptide tilt.
    Vostrikov VV; Daily AE; Greathouse DV; Koeppe RE
    J Biol Chem; 2010 Oct; 285(41):31723-30. PubMed ID: 20667827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible disc-micellization of dimyristoylphosphatidylcholine bilayers induced by melittin and [Ala-14]melittin.
    Dempsey CE; Sternberg B
    Biochim Biophys Acta; 1991 Jan; 1061(2):175-84. PubMed ID: 1998691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic and physicochemical studies on the interactions of reversible H+/K(+)-ATPase inhibitors with phospholipid bilayers.
    Reid DG; MacLachlan LK; Mitchell RC; Graham MJ; Raw MJ; Smith PA
    Biochim Biophys Acta; 1990 Nov; 1029(1):24-32. PubMed ID: 2171654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 1992 Nov; 31(46):11579-88. PubMed ID: 1445893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential scanning calorimetry and 2H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures.
    Morrow MR; Davis JH
    Biochemistry; 1988 Mar; 27(6):2024-32. PubMed ID: 2454132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid transfer between small unilamellar vesicles and single bilayers on a solid support: self-assembly of supported bilayers with asymmetric lipid distribution.
    Reinl HM; Bayerl TM
    Biochemistry; 1994 Nov; 33(47):14091-9. PubMed ID: 7947819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sterol affinity for phospholipid bilayers is influenced by hydrophobic matching between lipids and transmembrane peptides.
    Ijäs HK; Lönnfors M; Nyholm TK
    Biochim Biophys Acta; 2013 Mar; 1828(3):932-7. PubMed ID: 23220446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semisynthetic proteins: model systems for the study of the insertion of hydrophobic peptides into preformed lipid bilayers.
    Moll TS; Thompson TE
    Biochemistry; 1994 Dec; 33(51):15469-82. PubMed ID: 7528536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The topography of acetylcholinesterase in dimyristoylphosphatidylcholine liposomes.
    Barber RF; Stuhne-Sekalec L; Shek PN; Stanacev NZ
    J Microencapsul; 1989; 6(3):301-9. PubMed ID: 2547925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of small peptides with lipid bilayers.
    Damodaran KV; Merz KM; Gaber BP
    Biophys J; 1995 Oct; 69(4):1299-308. PubMed ID: 8534800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
    Firestone MA; Wolf AC; Seifert S
    Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.