These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3718977)

  • 1. Evidence that pyrene excimer formation in membranes is not diffusion-controlled.
    Blackwell MF; Gounaris K; Barber J
    Biochim Biophys Acta; 1986 Jun; 858(2):221-34. PubMed ID: 3718977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence decay of pyrene in small and large unilamellar L, alpha-dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature.
    Daems D; Van den Zegel M; Boens N; De Schryver FC
    Eur Biophys J; 1985; 12(2):97-105. PubMed ID: 3839455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding.
    Jones ME; Lentz BR
    Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenching of fluorescence of pyrene-substituted lecithin by tetracyanoquinodimethane in liposomes.
    Lemmetyinen H; Yliperttula M; Mikkola J; Kinnunen P
    Biophys J; 1989 May; 55(5):885-95. PubMed ID: 2720079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers.
    Barenholz Y; Cohen T; Haas E; Ottolenghi M
    J Biol Chem; 1996 Feb; 271(6):3085-90. PubMed ID: 8621705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excimer-forming lipids in membrane research.
    Galla HJ; Hartmann W
    Chem Phys Lipids; 1980 Oct; 27(3):199-219. PubMed ID: 7418114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence decay kinetics of pyrene in membrane vesicles.
    Liu BM; Cheung HC; Chen KH; Habercom MS
    Biophys Chem; 1980 Dec; 12(3-4):341-55. PubMed ID: 7225521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-dependent reduction of the pyrene excimer formation in membranes.
    Engelke M; Bojarski P; Diehl HA; Kubicki A
    J Membr Biol; 1996 Sep; 153(2):117-23. PubMed ID: 8703201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoprotein-protein interaction examined by kinetic studies of pyrene transfer.
    Neitchev VZ; Bideaud FA
    Mol Biol Rep; 1982 Mar; 8(2):65-9. PubMed ID: 7078551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes.
    Macdonald AG; Wahle KW; Cossins AR; Behan MK
    Biochim Biophys Acta; 1988 Feb; 938(2):231-42. PubMed ID: 3342234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endonexin (annexin IV)-mediated lateral segregation of phosphatidylglycerol in phosphatidylglycerol/phosphatidylcholine membranes.
    Junker M; Creutz CE
    Biochemistry; 1993 Sep; 32(38):9968-74. PubMed ID: 8399166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure dependence of pyrene excimer fluorescence in human erythrocyte membranes.
    Flamm M; Okubo T; Turro NJ; Schachter D
    Biochim Biophys Acta; 1982 Apr; 687(1):101-4. PubMed ID: 7074103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers.
    Ollmann M; Schwarzmann G; Sandhoff K; Galla HJ
    Biochemistry; 1987 Sep; 26(18):5943-52. PubMed ID: 3676298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization.
    Chong PL; Thompson TE
    Biophys J; 1985 May; 47(5):613-21. PubMed ID: 4016182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of phenothiazines on the viscosity and electrical stability of model phospholipid membranes].
    Parnev OM; Naumov OG; Ivkov NN; Vladimirov IuA
    Biull Eksp Biol Med; 1987 May; 103(5):555-7. PubMed ID: 3593924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transbilayer asymmetry of pyrene mobility in human spherocytic red cell membranes.
    Celedon G; Behn C; Montalar Y; Bagnara M; Sotomayor CP
    Biochim Biophys Acta; 1992 Mar; 1104(2):243-9. PubMed ID: 1547261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipyrenylphosphatidylcholines as membrane fluidity probes. Relationship between intramolecular and intermolecular excimer formation rates.
    Vauhkonen M; Sassaroli M; Somerharju P; Eisinger J
    Biophys J; 1990 Feb; 57(2):291-300. PubMed ID: 2317551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and characterization of the onset of bilayer packing defects by nanosecond-resolved intramolecular excimer fluorescence spectroscopy.
    Cheng KH; Somerharju P; Sugar I
    Chem Phys Lipids; 1994 Oct; 74(1):49-64. PubMed ID: 7820901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopical characteristics of galactosylceramide-pyrene and ceramide-pyrene incorporated in model and in clathrin coated vesicles.
    Nicolas E; Lavialle F; Alfsen A
    Chem Phys Lipids; 1993 Apr; 65(1):43-55. PubMed ID: 8348676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.