BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 37190069)

  • 1. PARP1 Regulates Circular RNA Biogenesis though Control of Transcriptional Dynamics.
    Eleazer R; De Silva K; Andreeva K; Jenkins Z; Osmani N; Rouchka EC; Fondufe-Mittendorf Y
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing.
    Matveeva EA; Al-Tinawi QMH; Rouchka EC; Fondufe-Mittendorf YN
    Epigenetics Chromatin; 2019 Feb; 12(1):15. PubMed ID: 30777121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PARP1's Involvement in RNA Polymerase II Elongation: Pausing and Releasing Regulation through the Integrator and Super Elongation Complex.
    Matveeva EA; Dhahri H; Fondufe-Mittendorf Y
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the biogenesis and potential functions of exonic circular RNA.
    Ragan C; Goodall GJ; Shirokikh NE; Preiss T
    Sci Rep; 2019 Feb; 9(1):2048. PubMed ID: 30765711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multifaceted role of PARP1 in RNA biogenesis.
    Eleazer R; Fondufe-Mittendorf YN
    Wiley Interdiscip Rev RNA; 2021 Mar; 12(2):e1617. PubMed ID: 32656996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the interplay between PARP1 and circRNA biogenesis and function.
    Dhahri H; Fondufe-Mittendorf YN
    Wiley Interdiscip Rev RNA; 2023 Nov; ():e1823. PubMed ID: 37957925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approach to Measuring the Effect of PARP1 on RNA Polymerase II Elongation Rates.
    Dhahri H; Matveeva E; Fondufe-Mittendorf Y
    Methods Mol Biol; 2023; 2609():315-328. PubMed ID: 36515843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals.
    Stagsted LVW; O'Leary ET; Ebbesen KK; Hansen TB
    Elife; 2021 Jan; 10():. PubMed ID: 33476259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular roles and function of circular RNAs in eukaryotic cells.
    Holdt LM; Kohlmaier A; Teupser D
    Cell Mol Life Sci; 2018 Mar; 75(6):1071-1098. PubMed ID: 29116363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 360° view of circular RNAs: From biogenesis to functions.
    Wilusz JE
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1478. PubMed ID: 29655315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular RNA Splicing.
    Eger N; Schoppe L; Schuster S; Laufs U; Boeckel JN
    Adv Exp Med Biol; 2018; 1087():41-52. PubMed ID: 30259356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaking regulates circular RNA production in cardiomyocytes.
    Montañés-Agudo P; van der Made I; Aufiero S; Tijsen AJ; Pinto YM; Creemers EE
    J Cell Sci; 2023 Jul; 136(13):. PubMed ID: 37272356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NOVA2 regulates neural circRNA biogenesis.
    Knupp D; Cooper DA; Saito Y; Darnell RB; Miura P
    Nucleic Acids Res; 2021 Jul; 49(12):6849-6862. PubMed ID: 34157123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient backsplicing produces translatable circular mRNAs.
    Wang Y; Wang Z
    RNA; 2015 Feb; 21(2):172-9. PubMed ID: 25449546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expanding regulatory mechanisms and cellular functions of circular RNAs.
    Chen LL
    Nat Rev Mol Cell Biol; 2020 Aug; 21(8):475-490. PubMed ID: 32366901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of PARP1 in the regulation of alternative splicing.
    Matveeva E; Maiorano J; Zhang Q; Eteleeb AM; Convertini P; Chen J; Infantino V; Stamm S; Wang J; Rouchka EC; Fondufe-Mittendorf YN
    Cell Discov; 2016; 2():15046. PubMed ID: 27462443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA-miRNA-mRNA Networks Exclusive to HIV-1 Viremic Patients.
    Zucko D; Hayir A; Grinde K; Boris-Lawrie K
    Viruses; 2022 Mar; 14(4):. PubMed ID: 35458413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Drosophila to uncover molecular and physiological functions of circRNAs.
    Krishnamoorthy A; Kadener S
    Methods; 2021 Dec; 196():74-84. PubMed ID: 33901645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive identification of alternative back-splicing in human tissue transcriptomes.
    Zhang P; Zhang XO; Jiang T; Cai L; Huang X; Liu Q; Li D; Lu A; Liu Y; Xue W; Zhang P; Weng Z
    Nucleic Acids Res; 2020 Feb; 48(4):1779-1789. PubMed ID: 31974555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.