These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3719035)

  • 1. Poly(iminocarbonates) as potential biomaterials.
    Kohn J; Langer R
    Biomaterials; 1986 May; 7(3):176-82. PubMed ID: 3719035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-property relationships for the design of polyiminocarbonates.
    Pulapura S; Li C; Kohn J
    Biomaterials; 1990 Nov; 11(9):666-78. PubMed ID: 2090301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation.
    Silver FH; Marks M; Kato YP; Li C; Pulapura S; Kohn J
    J Long Term Eff Med Implants; 1992; 1(4):329-46. PubMed ID: 10171118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of polyphosphates and polyphosphonates as degradable biomaterials.
    Richards M; Dahiyat BI; Arm DM; Brown PR; Leong KW
    J Biomed Mater Res; 1991 Sep; 25(9):1151-67. PubMed ID: 1778999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.
    Ozcelik B; Brown KD; Blencowe A; Ladewig K; Stevens GW; Scheerlinck JP; Abberton K; Daniell M; Qiao GG
    Adv Healthc Mater; 2014 Sep; 3(9):1496-507. PubMed ID: 24652807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions.
    Qu XH; Wu Q; Zhang KY; Chen GQ
    Biomaterials; 2006 Jul; 27(19):3540-8. PubMed ID: 16542719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications.
    Fiordeliso J; Bron S; Kohn J
    J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA).
    Gogolewski S; Jovanovic M; Perren SM; Dillon JG; Hughes MK
    J Biomed Mater Res; 1993 Sep; 27(9):1135-48. PubMed ID: 8126012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.
    Sorg BS; Welch AJ
    Lasers Surg Med; 2001; 28(4):297-306. PubMed ID: 11344508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological evaluation of biocompatible orthopaedic polymer.
    Wu SC; Klein CP; van der Lubbe HB; de Groot K; van den Hooff A
    Biomaterials; 1990 Sep; 11(7):491-4. PubMed ID: 2135634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.
    James K; Levene H; Parsons JR; Kohn J
    Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity.
    Kohn J; Niemi SM; Albert EC; Murphy JC; Langer R; Fox JG
    J Immunol Methods; 1986 Dec; 95(1):31-8. PubMed ID: 3782824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers.
    Han J; Wu LP; Liu XB; Hou J; Zhao LL; Chen JY; Zhao DH; Xiang H
    Biomaterials; 2017 Sep; 139():172-186. PubMed ID: 28618347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization.
    Pistner H; Bendix DR; Mühling J; Reuther JF
    Biomaterials; 1993; 14(4):291-8. PubMed ID: 8476999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.