These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3719038)

  • 1. In vivo measurement of electrical parameters with alumina-covered stainless steel electrodes.
    Escudero ML; Ruiz J; González JA; Ruiz J
    Biomaterials; 1986 May; 7(3):197-200. PubMed ID: 3719038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment.
    Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 316LVM and MP35N alloys as charge injection electrodes.
    Cogan SF; Jones GS; Hills DV; Walter JS; Riedy LW
    J Biomed Mater Res; 1994 Feb; 28(2):233-40. PubMed ID: 8207036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial corrosion of stainless steel.
    Ibars JR; Moreno DA; Ranninger C
    Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary investigation of the electrochemical properties of a nitrided stainless steel for dental applications.
    Watkins KG; Ben Younis S; Davies DE; Williams K
    Biomaterials; 1986 Mar; 7(2):147-51. PubMed ID: 3708066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro corrosion of Ti-6Al-4V and type 316L stainless steel when galvanically coupled with carbon.
    Thompson NG; Buchanan RA; Lemons JE
    J Biomed Mater Res; 1979 Jan; 13(1):35-44. PubMed ID: 429383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
    Le MK; Zhu XM
    Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiodynamic Corrosion Testing.
    Munir S; Pelletier MH; Walsh WR
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27683978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the surface finish of alumina and stainless steel on the wear rate of UHMW polyethylene.
    Weightman B; Light D
    Biomaterials; 1986 Jan; 7(1):20-4. PubMed ID: 3955153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro corrosion analysis in low-intensity, pulsed ultrasound.
    Pittner DE; Levin L; Archdeacon MT
    Am J Orthop (Belle Mead NJ); 2008 Feb; 37(2):E32-7. PubMed ID: 18401492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution].
    Guo L; Liang C; Guo H; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):565-7. PubMed ID: 11791309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.