These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37190393)

  • 1. Adversarial Decision-Making for Moving Target Defense: A Multi-Agent Markov Game and Reinforcement Learning Approach.
    Yao Q; Wang Y; Xiong X; Wang P; Li Y
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Approach towards Multi-Agent Pursuit-Evasion Game Decision-Making Using Deep Reinforcement Learning.
    Wan K; Wu D; Zhai Y; Li B; Gao X; Hu Z
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximating Nash equilibrium for anti-UAV jamming Markov game using a novel event-triggered multi-agent reinforcement learning.
    Feng Z; Huang M; Wu Y; Wu D; Cao J; Korovin I; Gorbachev S; Gorbacheva N
    Neural Netw; 2023 Apr; 161():330-342. PubMed ID: 36774870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the complexity of computing Markov perfect equilibrium in general-sum stochastic games.
    Deng X; Li N; Mguni D; Wang J; Yang Y
    Natl Sci Rev; 2023 Jan; 10(1):nwac256. PubMed ID: 36684520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAC Reinforcement Learning Algorithm for General-Sum Markov Games.
    Zehfroosh A; Tanner HG
    IEEE Trans Automat Contr; 2023 May; 68(5):2821-2831. PubMed ID: 37915545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Playing Extensive Games with Learning of Opponent's Cognition.
    Liu C; Cong J; Yao W; Zhu E
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-based decision learning of Nash equilibria in two-player games.
    Friedrich J; Senn W
    PLoS Comput Biol; 2012; 8(9):e1002691. PubMed ID: 23028289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Minimax Q Network Learning for Two-Player Zero-Sum Markov Games.
    Zhu Y; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1228-1241. PubMed ID: 33306474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiagent Adversarial Collaborative Learning via Mean-Field Theory.
    Luo G; Zhang H; He H; Li J; Wang FY
    IEEE Trans Cybern; 2021 Oct; 51(10):4994-5007. PubMed ID: 33095725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decentralized learning in Markov games.
    Vrancx P; Verbeeck K; Nowé A
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):976-81. PubMed ID: 18632387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiagent reinforcement learning with unshared value functions.
    Hu Y; Gao Y; An B
    IEEE Trans Cybern; 2015 Apr; 45(4):647-62. PubMed ID: 25014990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Reinforcement Learning in Multiagent Intelligent Decision-Making.
    Han X
    Comput Intell Neurosci; 2022; 2022():8683616. PubMed ID: 36156954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties.
    He X; Hao J; Chen X; Wang J; Ji X; Lv C
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38781066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Mean-Field Actor-Critic Reinforcement Learning Against Adversarial Perturbations on Agent States.
    Zhou Z; Liu G; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37276092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation.
    Oh SH; Jeong MK; Kim HC; Park J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolving Robust Policy Coverage Sets in Multi-Objective Markov Decision Processes Through Intrinsically Motivated Self-Play.
    Abdelfattah S; Kasmarik K; Hu J
    Front Neurorobot; 2018; 12():65. PubMed ID: 30356836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Reinforcement Learning for Nash Equilibrium of Differential Games.
    Li Z; Luo Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38261501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning.
    Hu T; Luo B; Yang C; Huang T
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12098-12112. PubMed ID: 37285257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning in supply chains.
    Valluri A; North MJ; Macal CM
    Int J Neural Syst; 2009 Oct; 19(5):331-44. PubMed ID: 19885962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning and decision making in monkeys during a rock-paper-scissors game.
    Lee D; McGreevy BP; Barraclough DJ
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):416-30. PubMed ID: 16095886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.