These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Deep fuzzy physics-informed neural networks for forward and inverse PDE problems. Wu W; Duan S; Sun Y; Yu Y; Liu D; Peng D Neural Netw; 2024 Oct; 181():106750. PubMed ID: 39427411 [TBL] [Abstract][Full Text] [Related]
5. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation. Alkhadhr S; Almekkawy M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210 [TBL] [Abstract][Full Text] [Related]
6. Learning Only on Boundaries: A Physics-Informed Neural Operator for Solving Parametric Partial Differential Equations in Complex Geometries. Fang Z; Wang S; Perdikaris P Neural Comput; 2024 Feb; 36(3):475-498. PubMed ID: 38363659 [TBL] [Abstract][Full Text] [Related]
7. Tackling the curse of dimensionality with physics-informed neural networks. Hu Z; Shukla K; Karniadakis GE; Kawaguchi K Neural Netw; 2024 Aug; 176():106369. PubMed ID: 38754287 [TBL] [Abstract][Full Text] [Related]
9. Physics-Informed Neural Networks for Solving Coupled Stokes-Darcy Equation. Pu R; Feng X Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010770 [TBL] [Abstract][Full Text] [Related]
10. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor. Tarkhov D; Lazovskaya T; Malykhina G Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461 [TBL] [Abstract][Full Text] [Related]
11. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks. Karnakov P; Litvinov S; Koumoutsakos P PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513 [TBL] [Abstract][Full Text] [Related]
12. Physics-Informed Neural Networks for Solving Forward and Inverse Problems in Complex Beam Systems. Kapoor T; Wang H; Nunez A; Dollevoet R IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):5981-5995. PubMed ID: 37725741 [TBL] [Abstract][Full Text] [Related]
13. Solving high-dimensional partial differential equations using deep learning. Han J; Jentzen A; E W Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389 [TBL] [Abstract][Full Text] [Related]
14. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations. Goraya S; Sobh N; Masud A Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614 [TBL] [Abstract][Full Text] [Related]
15. Solving the non-local Fokker-Planck equations by deep learning. Jiang S; Li X Chaos; 2023 Apr; 33(4):. PubMed ID: 37097949 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity. Roy AM; Bose R; Sundararaghavan V; Arróyave R Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712 [TBL] [Abstract][Full Text] [Related]
17. Can physics-informed neural networks beat the finite element method? Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736 [TBL] [Abstract][Full Text] [Related]
18. Recipes for when physics fails: recovering robust learning of physics informed neural networks. Bajaj C; McLennan L; Andeen T; Roy A Mach Learn Sci Technol; 2023 Mar; 4(1):015013. PubMed ID: 37680302 [TBL] [Abstract][Full Text] [Related]
19. An improved data-free surrogate model for solving partial differential equations using deep neural networks. Chen X; Chen R; Wan Q; Xu R; Liu J Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943 [TBL] [Abstract][Full Text] [Related]