These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 37190465)

  • 21. Investigating molecular transport in the human brain from MRI with physics-informed neural networks.
    Zapf B; Haubner J; Kuchta M; Ringstad G; Eide PK; Mardal KA
    Sci Rep; 2022 Sep; 12(1):15475. PubMed ID: 36104360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Scalable Tanh (Stan): Multi-Scale Solutions for Physics-Informed Neural Networks.
    Gnanasambandam R; Shen B; Chung J; Yue X; Kong Z
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15588-15603. PubMed ID: 37610913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-driven solutions and parameter estimations of a family of higher-order KdV equations based on physics informed neural networks.
    Chen J; Shi J; He A; Fang H
    Sci Rep; 2024 Oct; 14(1):23874. PubMed ID: 39396058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks.
    Yin M; Zheng X; Humphrey JD; Em Karniadakis G
    Comput Methods Appl Mech Eng; 2021 Mar; 375():. PubMed ID: 33414569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A physics-informed neural network based on mixed data sampling for solving modified diffusion equations.
    Fang Q; Mou X; Li S
    Sci Rep; 2023 Feb; 13(1):2491. PubMed ID: 36781943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Weight Strategy of Physics-Informed Neural Networks for the 2D Navier-Stokes Equations.
    Li S; Feng X
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physics-informed neural wavefields with Gabor basis functions.
    Alkhalifah T; Huang X
    Neural Netw; 2024 Jul; 175():106286. PubMed ID: 38640697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks.
    Asadzadeh MZ; Roppert K; Raninger P
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning and inverse discovery of polymer self-consistent field theory inspired by physics-informed neural networks.
    Lin D; Yu HY
    Phys Rev E; 2022 Jul; 106(1-1):014503. PubMed ID: 35974507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A constrained backpropagation approach for the adaptive solution of partial differential equations.
    Rudd K; Di Muro G; Ferrari S
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):571-84. PubMed ID: 24807452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
    Zhang Y; Dong H; Sun J; Wang Z; Fang Y; Kong Y
    Comput Intell Neurosci; 2021; 2021():8548482. PubMed ID: 34868298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem.
    Mandl L; Mielke A; Seyedpour SM; Ricken T
    Sci Rep; 2023 Sep; 13(1):15566. PubMed ID: 37730743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FDM data driven U-Net as a 2D Laplace PINN solver.
    Maria Antony AN; Narisetti N; Gladilin E
    Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing neurodynamic approach with physics-informed neural networks for solving non-smooth convex optimization problems.
    Wu D; Lisser A
    Neural Netw; 2023 Nov; 168():419-430. PubMed ID: 37804745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network.
    Fang Z
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5514-5526. PubMed ID: 33848251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning Traveling Solitary Waves Using Separable Gaussian Neural Networks.
    Xing S; Charalampidis EG
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data-driven rogue waves solutions for the focusing and variable coefficient nonlinear Schrödinger equations via deep learning.
    Sun J; Dong H; Liu M; Fang Y
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39028903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.