These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37190868)

  • 21. How habitat-modifying organisms structure the food web of two coastal ecosystems.
    van der Zee EM; Angelini C; Govers LL; Christianen MJ; Altieri AH; van der Reijden KJ; Silliman BR; van de Koppel J; van der Geest M; van Gils JA; van der Veer HW; Piersma T; de Ruiter PC; Olff H; van der Heide T
    Proc Biol Sci; 2016 Mar; 283(1826):20152326. PubMed ID: 26962135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodiversity increased both productivity and its spatial stability in temperate forests in northeastern China.
    Gao WQ; Lei XD; Liang MW; Larjavaara M; Li YT; Gao DL; Zhang HR
    Sci Total Environ; 2021 Aug; 780():146674. PubMed ID: 34030338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does primary productivity modulate the indirect effects of large herbivores? A global meta-analysis.
    Daskin JH; Pringle RM
    J Anim Ecol; 2016 Jul; 85(4):857-68. PubMed ID: 27007672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure?
    Kondoh M
    J Theor Biol; 2006 Feb; 238(3):646-51. PubMed ID: 16085108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature, productivity, and habitat characteristics collectively drive lake food web structure.
    Leclerc C; Reynaud N; Danis PA; Moatar F; Daufresne M; Argillier C; Usseglio-Polatera P; Verneaux V; Dedieu N; Frossard V; Sentis A
    Glob Chang Biol; 2023 May; 29(9):2450-2465. PubMed ID: 36799515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two degrees of separation in complex food webs.
    Williams RJ; Berlow EL; Dunne JA; Barabási AL; Martinez ND
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12913-6. PubMed ID: 12235367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecosystem consequences of species richness and composition in pond food webs.
    Downing AL; Leibold MA
    Nature; 2002 Apr; 416(6883):837-41. PubMed ID: 11976680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction strength, food web topology and the relative importance of species in food webs.
    O'Gorman EJ; Jacob U; Jonsson T; Emmerson MC
    J Anim Ecol; 2010 May; 79(3):682-92. PubMed ID: 20102420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple anthropogenic stressors and the structural properties of food webs.
    O'Gorman EJ; Fitch JE; Crowe TP
    Ecology; 2012 Mar; 93(3):441-8. PubMed ID: 22624198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species richness and allometric scaling jointly determine biomass in model aquatic food webs.
    Long ZT; Steiner CF; Krumins JA; Morin PJ
    J Anim Ecol; 2006 Jul; 75(4):1014-23. PubMed ID: 17009764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A landscape theory for food web architecture.
    Rooney N; McCann KS; Moore JC
    Ecol Lett; 2008 Aug; 11(8):867-81. PubMed ID: 18445027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trait-based food web model reveals the underlying mechanisms of biodiversity-ecosystem functioning relationships.
    Maureaud A; Andersen KH; Zhang L; Lindegren M
    J Anim Ecol; 2020 Jun; 89(6):1497-1510. PubMed ID: 32162299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the effects of temperature on food web connectance.
    Petchey OL; Brose U; Rall BC
    Philos Trans R Soc Lond B Biol Sci; 2010 Jul; 365(1549):2081-91. PubMed ID: 20513716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions.
    Rodriguez ID; Marina TI; Schloss IR; Saravia LA
    Mar Environ Res; 2022 Feb; 174():105561. PubMed ID: 35026725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Richness-productivity relationships between trophic levels in a detritus-based system: significance of abundance and trophic linkage.
    Yee DA; Yee SH; Kneitel JM; Juliano SA
    Oecologia; 2007 Nov; 154(2):377-85. PubMed ID: 17713787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in host-parasitoid food web structure with elevation.
    Maunsell SC; Kitching RL; Burwell CJ; Morris RJ
    J Anim Ecol; 2015 Mar; 84(2):353-63. PubMed ID: 25244661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity.
    Rzanny M; Voigt W
    J Anim Ecol; 2012 May; 81(3):614-27. PubMed ID: 22292705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multitrophic diversity sustains ecological complexity by dampening top-down control of a shallow marine benthic food web.
    O'Gorman EJ
    Ecology; 2021 Mar; 102(3):e03274. PubMed ID: 33368225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hidden role of multi-trophic interactions in driving diversity-productivity relationships.
    Albert G; Gauzens B; Loreau M; Wang S; Brose U
    Ecol Lett; 2022 Feb; 25(2):405-415. PubMed ID: 34846785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.