These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37190945)

  • 1. Novel germanene-arsenene and germanene-antimonene lateral heterostructures: interline-dependent electronic and magnetic properties.
    Ha CV; Nguyen Thi BN; Trang PQ; Ponce-Pérez R; Guerrero-Sanchez J; Hoat DM
    Phys Chem Chem Phys; 2023 May; 25(20):14502-14510. PubMed ID: 37190945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band structural and absorption characteristics of antimonene/bismuthene monolayer heterojunction calculated by first-principles.
    Zhan Y; Fang X; Wang D; Fang D; Li B; Li J; Wang X
    Front Chem; 2022; 10():973516. PubMed ID: 35991608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically Thin p-n/p-n Nanodevices by Surface Charge Transfer Doping of Arsenene/Antimonene Heterostructures.
    Zhang L; Liang W
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23851-23857. PubMed ID: 29939005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of Co doping and strain on arsenene and antimonene: tunable magnetism and half-metallic behavior.
    Zhou Y; Cheng G; Li J
    RSC Adv; 2018 Jan; 8(3):1320-1327. PubMed ID: 35540909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing doping strategy in arsenene monolayer for spintronic and optoelectronic applications: a case study of germanium and nitrogen as dopants.
    Van On V; Ha CV; Anh DT; Guerrero-Sanchez J; Hoat DM
    J Phys Condens Matter; 2022 Jun; 34(35):. PubMed ID: 35724657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the linear band dispersion of monolayer and bilayer germanene on Cu(111).
    Li F; Wei W; Lv X; Huang B; Dai Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):22844-22851. PubMed ID: 28812078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures.
    Pang Q; Xin H; Chai R; Gao D; Zhao J; Xie Y; Song Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of SiC and GeC monolayers with adsorbed non-metal atoms.
    Ha CV; Ha LT; Hue DT; Nguyen DK; Anh DT; Guerrero-Sanchez J; Hoat DM
    RSC Adv; 2023 May; 13(22):14879-14886. PubMed ID: 37200697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain engineering of lateral heterostructures based on group-V enes (As, Sb, Bi) for infrared optoelectronic applications calculated by first principles.
    Liu M; Li W; Cheng D; Fang X; Zhao H; Wang D; Li J; Zhai Y; Fan J; Wang H; Wang X; Fang D; Ma X
    RSC Adv; 2022 May; 12(23):14578-14585. PubMed ID: 35702203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study.
    Wang Y; Ding Y
    Nanoscale Res Lett; 2015 Dec; 10(1):955. PubMed ID: 26058516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-dimensional van der Waals CdS/germanene heterojunction with promising electronic and optoelectronic properties: DFT + NEGF investigations.
    Zheng K; Yang Q; Tan CJ; Ye HY; Chen XP
    Phys Chem Chem Phys; 2017 Jul; 19(28):18330-18337. PubMed ID: 28678280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Proximity-Induced Dirac Fermion in Two-Dimensional Antimonene.
    Su SH; Chuang PY; Chen HY; Weng SC; Chen WC; Tsuei KD; Lee CK; Yu SH; Chou MM; Tu LW; Jeng HT; Tu CM; Luo CW; Cheng CM; Chang TR; Huang JA
    ACS Nano; 2021 Sep; 15(9):15085-15095. PubMed ID: 34435764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroic and optical properties of germanene/MoS
    Li H; Yu Y; Xue X; Xie J; Si H; Lee JY; Fu A
    J Mol Model; 2018 Nov; 24(12):333. PubMed ID: 30402737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Janus-functionalization induced magnetism and improved optoelectronic properties in two-dimension silicene and germanene: insights from first-principles calculations.
    Guo G; Xu Y; Guo G
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37172600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.
    Zhang S; Yan Z; Li Y; Chen Z; Zeng H
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3112-5. PubMed ID: 25564773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching for d
    Nguyen DK; Bao TV; Kha NA; Ponce-Pérez R; Guerrero-Sanchez J; Hoat DM
    RSC Adv; 2023 Feb; 13(9):5885-5892. PubMed ID: 36816073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Si, Be, Al, N and S dual doping on arsenene: first-principles insights.
    Mushtaq M; Godara S; Khenata R; Usman Hameed M
    RSC Adv; 2021 Jul; 11(41):25217-25227. PubMed ID: 35478924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.
    Wang X; Wu Z
    Phys Chem Chem Phys; 2017 Jan; 19(3):2148-2152. PubMed ID: 28045150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Electronic and Topological Properties of Germanene by Functional Group Modification.
    Ren CC; Zhang SF; Ji WX; Zhang CW; Li P; Wang PJ
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29509699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band engineering of Dirac materials in Sb
    Liu Y
    RSC Adv; 2021 May; 11(28):17445-17455. PubMed ID: 35479692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.