These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37191100)

  • 1. The Three-Phase Contact Potential Difference Modulates the Water Surface Charge.
    Artemov V; Frank L; Doronin R; Stärk P; Schlaich A; Andreev A; Leisner T; Radenovic A; Kiselev A
    J Phys Chem Lett; 2023 May; 14(20):4796-4802. PubMed ID: 37191100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative description of the interfacial energy of a liquid in contact with a solid.
    Janssens-Maenhout GG; Schulenberg T
    J Colloid Interface Sci; 2003 Jan; 257(1):141-53. PubMed ID: 16256466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid-liquid interfaces.
    Panda PK; Singh D; Köhler MH; de Vargas DD; Wang ZL; Ahuja R
    Nanoscale Adv; 2022 Feb; 4(3):884-893. PubMed ID: 36131814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moving Water Droplets: The Role of Atmospheric CO
    Kowacz M; Pollack GH
    J Phys Chem B; 2019 Dec; 123(51):11003-11013. PubMed ID: 31808695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Charge Transfer Modulated Static Friction Resistance of Water Drops.
    Hu T; Wang X; Sheng H; Chen X; Tan J; Fang S; Deng W; Li X; Yin J; Guo W
    Langmuir; 2023 Jul; 39(26):9246-9252. PubMed ID: 37352469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface.
    Baer MD; Stern AC; Levin Y; Tobias DJ; Mundy CJ
    J Phys Chem Lett; 2012 Jun; 3(11):1565-70. PubMed ID: 26285639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge.
    Sun Y; Huang X; Soh S
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9956-60. PubMed ID: 27417888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic Origins of the Positive and Negative Charging Difference in the Contact Charge Electrophoresis of a Water Droplet.
    Yang SH; Im DJ
    Langmuir; 2017 Dec; 33(48):13740-13748. PubMed ID: 29131964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.
    Moon JK; Song MW; Pak HK
    J Phys Condens Matter; 2015 May; 27(19):194102. PubMed ID: 25923410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment.
    Karraker KA; Radke CJ
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):231-64. PubMed ID: 11908789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial water asymmetry at ideal electrochemical interfaces.
    Shandilya A; Schwarz K; Sundararaman R
    J Chem Phys; 2022 Jan; 156(1):014705. PubMed ID: 34998343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes.
    Li Z; Ruiz VG; Kanduč M; Dzubiella J
    ACS Nano; 2021 Aug; 15(8):13155-13165. PubMed ID: 34370454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT-MD of the (110)-Co
    Creazzo F; Galimberti DR; Pezzotti S; Gaigeot MP
    J Chem Phys; 2019 Jan; 150(4):041721. PubMed ID: 30709279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic driving forces in contact electrification between polymeric materials.
    Zhang H; Sundaresan S; Webb MA
    Nat Commun; 2024 Mar; 15(1):2616. PubMed ID: 38521773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces.
    Brackley CA; Lips A; Morozov A; Poon WCK; Marenduzzo D
    Nat Commun; 2021 Nov; 12(1):6812. PubMed ID: 34819516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge density distribution at interfaces between polyelectrolyte layers and aqueous solutions--experimental access and limitations of traditional electrokinetics.
    Dukhin SS; Zimmermann R; Werner C
    J Colloid Interface Sci; 2008 Dec; 328(2):217-26. PubMed ID: 19213139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution.
    Bonagiri LKS; Panse KS; Zhou S; Wu H; Aluru NR; Zhang Y
    ACS Nano; 2022 Nov; 16(11):19594-19604. PubMed ID: 36351178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Contact Electrification at Liquid-Gas Interface.
    Wang F; Yang P; Tao X; Shi Y; Li S; Liu Z; Chen X; Wang ZL
    ACS Nano; 2021 Nov; 15(11):18206-18213. PubMed ID: 34677929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.