These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37191297)

  • 1. Cross-linkable, phosphobetaine-based, zwitterionic amphiphiles that form lyotropic bicontinuous cubic phases.
    Bodkin LN; Krajnak ZA; Dong R; Osuji CO; Gin DL
    Soft Matter; 2023 May; 19(21):3768-3772. PubMed ID: 37191297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Cross-linkable, phosphobetaine-based, zwitterionic amphiphiles that form lyotropic bicontinuous cubic phases.
    Bodkin LN; Krajnak ZA; Dong R; Osuji CO; Gin DL
    Soft Matter; 2023 Sep; 19(35):6851-6854. PubMed ID: 37646194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles.
    Pindzola BA; Jin J; Gin DL
    J Am Chem Soc; 2003 Mar; 125(10):2940-9. PubMed ID: 12617661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases.
    Robertson LA; Schenkel MR; Wiesenauer BR; Gin DL
    Chem Commun (Camb); 2013 Oct; 49(82):9407-9. PubMed ID: 24003443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.
    Moghaddam MJ; de Campo L; Kirby N; Drummond CJ
    Phys Chem Chem Phys; 2012 Oct; 14(37):12854-62. PubMed ID: 22890045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids.
    Takeuchi H; Ichikawa T; Yoshio M; Kato T; Ohno H
    Chem Commun (Camb); 2016 Nov; 52(96):13861-13864. PubMed ID: 27841379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of structural modification of (alkyldiene-imidazolium bromide)-based gemini monomers on the formation of the lyotropic bicontinuous cubic phase.
    Li P; Reinhardt MI; Dyer SS; Moore KE; Imran OQ; Gin DL
    Soft Matter; 2021 Oct; 17(41):9259-9263. PubMed ID: 34636835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants.
    Fong C; Wells D; Krodkiewska I; Weerawardeena A; Booth J; Hartley PG; Drummond CJ
    J Phys Chem B; 2007 Sep; 111(36):10713-22. PubMed ID: 17705418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Viologen-Based Liquid Crystals Exhibiting Bicontinuous Cubic Phases and Their Redox-Active Behavior.
    Kobayashi T; Ichikawa T
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants.
    Sorenson GP; Coppage KL; Mahanthappa MK
    J Am Chem Soc; 2011 Sep; 133(38):14928-31. PubMed ID: 21888359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly.
    Zhou M; Nemade PR; Lu X; Zeng X; Hatakeyama ES; Noble RD; Gin DL
    J Am Chem Soc; 2007 Aug; 129(31):9574-5. PubMed ID: 17636920
    [No Abstract]   [Full Text] [Related]  

  • 12. Transformation between Inverse Bicontinuous Cubic Phases of a Lipid from Diamond to Gyroid.
    Oka T
    Langmuir; 2015 Oct; 31(41):11353-9. PubMed ID: 26425878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation between inverse bicontinuous cubic phases of a lipid from diamond to primitive.
    Oka T
    Langmuir; 2015 Mar; 31(10):3180-5. PubMed ID: 25719417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour.
    Sagnella SM; Conn CE; Krodkiewska I; Drummond CJ
    Phys Chem Chem Phys; 2011 Oct; 13(39):17511-20. PubMed ID: 21909506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.
    Shearman GC; Khoo BJ; Motherwell ML; Brakke KA; Ces O; Conn CE; Seddon JM; Templer RH
    Langmuir; 2007 Jun; 23(13):7276-85. PubMed ID: 17503862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-swelled lyotropic single crystals.
    Kim H; Song Z; Leal C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10834-10839. PubMed ID: 28973884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.
    Fong C; Weerawardena A; Sagnella SM; Mulet X; Krodkiewska I; Chong J; Drummond CJ
    Langmuir; 2011 Mar; 27(6):2317-26. PubMed ID: 21294552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling of Bicontinuous Cubic Phases in Guerbet Glycolipid: Effects of Additives.
    Salim M; Wan Iskandar WF; Patrick M; Zahid NI; Hashim R
    Langmuir; 2016 Jun; 32(22):5552-61. PubMed ID: 27183393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles.
    Feast GC; Lepitre T; Tran N; Conn CE; Hutt OE; Mulet X; Drummond CJ; Savage GP
    Colloids Surf B Biointerfaces; 2017 Mar; 151():34-38. PubMed ID: 27940167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining and Characterizing Stable Bicontinuous Cubic Morphologies and Their Nanochannels in Lyotropic Liquid Crystal Membranes.
    Sahu S; Schwindt NS; Coscia BJ; Shirts MR
    J Phys Chem B; 2022 Dec; 126(48):10098-10110. PubMed ID: 36417348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.