These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent. Williams SD; Pappalardo L; Bishop J; Brooks PR J Agric Food Chem; 2018 Oct; 66(42):11133-11140. PubMed ID: 30289260 [TBL] [Abstract][Full Text] [Related]
3. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of mānuka (Leptospermum scoparium). Clearwater MJ; Revell M; Noe S; Manley-Harris M Ann Bot; 2018 Mar; 121(3):501-512. PubMed ID: 29300875 [TBL] [Abstract][Full Text] [Related]
4. Sugar and dihydroxyacetone ratios in floral nectar suggest continuous exudation and reabsorption in Leptospermum polygalifolium Salisb. Obeng-Darko SA; Brooks PR; Veneklaas EJ; Finnegan PM Plant Sci; 2022 Oct; 323():111378. PubMed ID: 35842059 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of Dihydroxyacetone in Australian Leptospermum Nectar via High-Performance Liquid Chromatography. Norton AM; McKenzie LN; Brooks PR; Pappalardo LJ J Agric Food Chem; 2015 Jul; 63(29):6513-7. PubMed ID: 26140295 [TBL] [Abstract][Full Text] [Related]
6. Nectary photosynthesis contributes to the production of mānuka (Leptospermum scoparium) floral nectar. Clearwater MJ; Noe ST; Manley-Harris M; Truman GL; Gardyne S; Murray J; Obeng-Darko SA; Richardson SJ New Phytol; 2021 Nov; 232(4):1703-1717. PubMed ID: 34287899 [TBL] [Abstract][Full Text] [Related]
7. Regional, annual, and individual variations in the dihydroxyacetone content of the nectar of ma̅nuka (Leptospermum scoparium) in New Zealand. Williams S; King J; Revell M; Manley-Harris M; Balks M; Janusch F; Kiefer M; Clearwater M; Brooks P; Dawson M J Agric Food Chem; 2014 Oct; 62(42):10332-40. PubMed ID: 25277074 [TBL] [Abstract][Full Text] [Related]
8. A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). Grierson ERP; Thrimawithana AH; van Klink JW; Lewis DH; Carvajal I; Shiller J; Miller P; Deroles SC; Clearwater MJ; Davies KM; Chagné D; Schwinn KE New Phytol; 2024 Jun; 242(5):2270-2284. PubMed ID: 38532557 [TBL] [Abstract][Full Text] [Related]
9. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Adams CJ; Manley-Harris M; Molan PC Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902 [TBL] [Abstract][Full Text] [Related]
10. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof. Grainger MN; Manley-Harris M; Fauzi NA; Farid MM Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711 [TBL] [Abstract][Full Text] [Related]
11. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Atrott J; Haberlau S; Henle T Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208 [TBL] [Abstract][Full Text] [Related]
12. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels. Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589 [TBL] [Abstract][Full Text] [Related]
13. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Rückriemen J; Klemm O; Henle T Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324 [TBL] [Abstract][Full Text] [Related]
16. New approach: Chemical and fluorescence profiling of NZ honeys. Bong J; Loomes KM; Lin B; Stephens JM Food Chem; 2018 Nov; 267():355-367. PubMed ID: 29934178 [TBL] [Abstract][Full Text] [Related]
17. Isolation of maltol glucoside from the floral nectar of New Zealand mānuka (Leptospermum scoparium). Adams CJ; Grainger MN; Manley-Harris M Food Chem; 2015 May; 174():306-9. PubMed ID: 25529685 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems. Grainger MN; Manley-Harris M; Lane JR; Field RJ Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323 [TBL] [Abstract][Full Text] [Related]