BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37191512)

  • 1. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus.
    Markakiou S; Neves AR; Zeidan AA; Gaspar P
    Microbiol Spectr; 2023 Jun; 11(3):e0066823. PubMed ID: 37191512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing
    Valenzuela JA; Vázquez L; Rodríguez J; Flórez AB; Vasek OM; Mayo B
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis.
    Ammann A; Neve H; Geis A; Heller KJ
    J Bacteriol; 2008 Apr; 190(8):3083-7. PubMed ID: 18263725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly bioluminescent Streptococcus thermophilus strain for the detection of diary-relevant antibiotics in milk.
    Jacobs MF; Tynkkynen S; Sibakov M
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):405-12. PubMed ID: 8597542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nisin-induced expression of pediocin in dairy lactic acid bacteria.
    Renye JA; Somkuti GA
    J Appl Microbiol; 2010 Jun; 108(6):2142-51. PubMed ID: 19929951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria.
    Coderre PE; Somkuti GA
    Curr Microbiol; 1999 Nov; 39(5):295-301. PubMed ID: 10489440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria.
    Pastink MI; Teusink B; Hols P; Visser S; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2009 Jun; 75(11):3627-33. PubMed ID: 19346354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific and interspecific interactions among proteins regulating exopolysaccharide synthesis in Streptococcus thermophilus, Streptococcus iniae, and Lactococcus lactis subsp. cremoris and the assessment of potential lateral gene transfer.
    Cefalo AD; Broadbent JR; Welker DL
    Can J Microbiol; 2011 Dec; 57(12):1002-15. PubMed ID: 22107596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase.
    Chang SM; Yan TR
    Biotechnol Lett; 2014 Feb; 36(2):327-35. PubMed ID: 24101246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000.
    Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C
    Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Growth Density and Nisin A Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors.
    Samelis J; Kakouri A
    J Food Prot; 2020 Mar; 83(3):542-551. PubMed ID: 32084256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression.
    Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system.
    Solow BT; Somkuti GA
    Curr Microbiol; 2001 Feb; 42(2):122-8. PubMed ID: 11136134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp.
    Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F
    J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector.
    Lee JH; Halgerson JS; Kim JH; O'Sullivan DJ
    Appl Environ Microbiol; 2007 Jul; 73(14):4417-24. PubMed ID: 17526779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia.
    Bandyopadhyay B; Das S; Mitra PK; Kundu A; Mandal V; Adhikary R; Mandal V; Mandal NC
    Braz J Microbiol; 2022 Jun; 53(2):903-920. PubMed ID: 35138631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a mosaic ISS1 element and evidence for the recent horizontal transfer of two different types of ISS1 between Streptococcus thermophilus and Lactococcus lactis.
    Bourgoin F; Guédon G; Pébay M; Roussel Y; Panis C; Decaris B
    Gene; 1996 Oct; 178(1-2):15-23. PubMed ID: 8921885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.