These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 37191512)
1. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus. Markakiou S; Neves AR; Zeidan AA; Gaspar P Microbiol Spectr; 2023 Jun; 11(3):e0066823. PubMed ID: 37191512 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing Valenzuela JA; Vázquez L; Rodríguez J; Flórez AB; Vasek OM; Mayo B Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397005 [TBL] [Abstract][Full Text] [Related]
3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis. van der Els S; James JK; Kleerebezem M; Bron PA Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254 [TBL] [Abstract][Full Text] [Related]
4. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis. Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872 [TBL] [Abstract][Full Text] [Related]
5. Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. Ammann A; Neve H; Geis A; Heller KJ J Bacteriol; 2008 Apr; 190(8):3083-7. PubMed ID: 18263725 [TBL] [Abstract][Full Text] [Related]
6. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791 [TBL] [Abstract][Full Text] [Related]
7. Highly bioluminescent Streptococcus thermophilus strain for the detection of diary-relevant antibiotics in milk. Jacobs MF; Tynkkynen S; Sibakov M Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):405-12. PubMed ID: 8597542 [TBL] [Abstract][Full Text] [Related]
8. Nisin-induced expression of pediocin in dairy lactic acid bacteria. Renye JA; Somkuti GA J Appl Microbiol; 2010 Jun; 108(6):2142-51. PubMed ID: 19929951 [TBL] [Abstract][Full Text] [Related]
9. Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Coderre PE; Somkuti GA Curr Microbiol; 1999 Nov; 39(5):295-301. PubMed ID: 10489440 [TBL] [Abstract][Full Text] [Related]
10. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Pastink MI; Teusink B; Hols P; Visser S; de Vos WM; Hugenholtz J Appl Environ Microbiol; 2009 Jun; 75(11):3627-33. PubMed ID: 19346354 [TBL] [Abstract][Full Text] [Related]
11. Intraspecific and interspecific interactions among proteins regulating exopolysaccharide synthesis in Streptococcus thermophilus, Streptococcus iniae, and Lactococcus lactis subsp. cremoris and the assessment of potential lateral gene transfer. Cefalo AD; Broadbent JR; Welker DL Can J Microbiol; 2011 Dec; 57(12):1002-15. PubMed ID: 22107596 [TBL] [Abstract][Full Text] [Related]
12. Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase. Chang SM; Yan TR Biotechnol Lett; 2014 Feb; 36(2):327-35. PubMed ID: 24101246 [TBL] [Abstract][Full Text] [Related]
13. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000. Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879 [TBL] [Abstract][Full Text] [Related]
14. Cell Growth Density and Nisin A Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors. Samelis J; Kakouri A J Food Prot; 2020 Mar; 83(3):542-551. PubMed ID: 32084256 [TBL] [Abstract][Full Text] [Related]
15. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518 [TBL] [Abstract][Full Text] [Related]
16. Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Solow BT; Somkuti GA Curr Microbiol; 2001 Feb; 42(2):122-8. PubMed ID: 11136134 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp. Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653 [TBL] [Abstract][Full Text] [Related]
18. Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector. Lee JH; Halgerson JS; Kim JH; O'Sullivan DJ Appl Environ Microbiol; 2007 Jul; 73(14):4417-24. PubMed ID: 17526779 [TBL] [Abstract][Full Text] [Related]
19. Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia. Bandyopadhyay B; Das S; Mitra PK; Kundu A; Mandal V; Adhikary R; Mandal V; Mandal NC Braz J Microbiol; 2022 Jun; 53(2):903-920. PubMed ID: 35138631 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a mosaic ISS1 element and evidence for the recent horizontal transfer of two different types of ISS1 between Streptococcus thermophilus and Lactococcus lactis. Bourgoin F; Guédon G; Pébay M; Roussel Y; Panis C; Decaris B Gene; 1996 Oct; 178(1-2):15-23. PubMed ID: 8921885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]