These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 37191530)
1. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530 [TBL] [Abstract][Full Text] [Related]
2. Primary Mode of Action of the Novel Sulfonamide Fungicide against Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447 [No Abstract] [Full Text] [Related]
3. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance. Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878 [No Abstract] [Full Text] [Related]
4. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. Gao P; Qin J; Li D; Zhou S PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571 [TBL] [Abstract][Full Text] [Related]
5. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769 [TBL] [Abstract][Full Text] [Related]
6. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15. Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053 [TBL] [Abstract][Full Text] [Related]
7. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
8. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea. Yang D; Shi H; Zhang K; Liu X; Ma L Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298 [TBL] [Abstract][Full Text] [Related]
9. Antifungal Activity of Eugenol Derivatives against Olea AF; Bravo A; Martínez R; Thomas M; Sedan C; Espinoza L; Zambrano E; Carvajal D; Silva-Moreno E; Carrasco H Molecules; 2019 Mar; 24(7):. PubMed ID: 30934962 [No Abstract] [Full Text] [Related]
10. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220 [TBL] [Abstract][Full Text] [Related]
11. Synergistic Effect of Combined Application of a New Fungicide Fluopimomide with a Biocontrol Agent Ji X; Li J; Meng Z; Zhang S; Dong B; Qiao K Plant Dis; 2019 Aug; 103(8):1991-1997. PubMed ID: 31169087 [TBL] [Abstract][Full Text] [Related]
12. Discovery of Natural Rosin Derivatives Containing Oxime Ester Moieties as Potential Antifungal Agents to Control Tomato Gray Mold Caused by Gao Y; Xu R; Gu S; Chen K; Li J; He X; Shang S; Song Z; Song J J Agric Food Chem; 2022 May; 70(18):5551-5560. PubMed ID: 35502453 [TBL] [Abstract][Full Text] [Related]
13. Sodium Valproate Is Effective Against Xu Y; Wang Y; Wang L; Liang W; Yang Q Phytopathology; 2022 Jun; 112(6):1264-1272. PubMed ID: 34982575 [No Abstract] [Full Text] [Related]
14. Cold atmospheric plasma fumigation suppresses postharvest apple Botrytis cinerea by triggering intracellular reactive oxygen species and mitochondrial calcium. Cao J; Fang Q; Han C; Zhong C Int J Food Microbiol; 2023 Dec; 407():110397. PubMed ID: 37716308 [TBL] [Abstract][Full Text] [Related]
15. Root treatment with a vitamin K García-Machado FJ; García-García AL; Borges AA; Jiménez-Arias D Pest Manag Sci; 2022 Mar; 78(3):974-981. PubMed ID: 34738317 [TBL] [Abstract][Full Text] [Related]
16. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193 [TBL] [Abstract][Full Text] [Related]
17. Effects of linalool on Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396 [TBL] [Abstract][Full Text] [Related]
18. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A. Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959 [TBL] [Abstract][Full Text] [Related]
19. Resistance to Boscalid in Liu S; Fu L; Tan H; Jiang J; Che Z; Tian Y; Chen G Plant Dis; 2021 Mar; 105(3):628-635. PubMed ID: 32820676 [TBL] [Abstract][Full Text] [Related]
20. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]