BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37191574)

  • 1. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features.
    Zhu Q; Gao S; Xiao B; He Z; Hu S
    Microbiol Spectr; 2023 Jun; 11(3):e0464522. PubMed ID: 37191574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of bacterial plasmid and chromosome derived sequences using machine learning.
    Zou X; Nguyen M; Overbeek J; Cao B; Davis JJ
    PLoS One; 2022; 17(12):e0279280. PubMed ID: 36525447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores.
    Schwengers O; Barth P; Falgenhauer L; Hain T; Chakraborty T; Goesmann A
    Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32579097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets.
    Pradier L; Tissot T; Fiston-Lavier AS; Bedhomme S
    BMC Bioinformatics; 2021 Jun; 22(1):349. PubMed ID: 34174810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SourceFinder: a Machine-Learning-Based Tool for Identification of Chromosomal, Plasmid, and Bacteriophage Sequences from Assemblies.
    Aytan-Aktug D; Grigorjev V; Szarvas J; Clausen PTLC; Munk P; Nguyen M; Davis JJ; Aarestrup FM; Lund O
    Microbiol Spectr; 2022 Dec; 10(6):e0264122. PubMed ID: 36377945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning.
    van der Graaf-van Bloois L; Wagenaar JA; Zomer AL
    Microb Genom; 2021 Nov; 7(11):. PubMed ID: 34846288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species.
    Arredondo-Alonso S; Rogers MRC; Braat JC; Verschuuren TD; Top J; Corander J; Willems RJL; Schürch AC
    Microb Genom; 2018 Nov; 4(11):. PubMed ID: 30383524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of plasmid contigs in draft genome assemblies using customized Kraken databases.
    Gomi R; Wyres KL; Holt KE
    Microb Genom; 2021 Apr; 7(4):. PubMed ID: 33826492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium.
    Arredondo-Alonso S; Top J; McNally A; Puranen S; Pesonen M; Pensar J; Marttinen P; Braat JC; Rogers MRC; van Schaik W; Kaski S; Willems RJL; Corander J; Schürch AC
    mBio; 2020 Feb; 11(1):. PubMed ID: 32047136
    [No Abstract]   [Full Text] [Related]  

  • 10. PLASMe: a tool to identify PLASMid contigs from short-read assemblies using transformer.
    Tang X; Shang J; Ji Y; Sun Y
    Nucleic Acids Res; 2023 Aug; 51(15):e83. PubMed ID: 37427782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PlasmidHunter: accurate and fast prediction of plasmid sequences using gene content profile and machine learning.
    Tian R; Zhou J; Imanian B
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The advantage of intergenic regions as genomic features for machine-learning-based host attribution of
    Chalka A; Dallman TJ; Vohra P; Stevens MP; Gally DL
    Microb Genom; 2023 Oct; 9(10):. PubMed ID: 37843883
    [No Abstract]   [Full Text] [Related]  

  • 14. Predicting variable gene content in
    Nguyen M; Elmore Z; Ihle C; Moen FS; Slater AD; Turner BN; Parrello B; Best AA; Davis JJ
    mSystems; 2023 Aug; 8(4):e0005823. PubMed ID: 37314210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iProbiotics: a machine learning platform for rapid identification of probiotic properties from whole-genome primary sequences.
    Sun Y; Li H; Zheng L; Li J; Hong Y; Liang P; Kwok LY; Zuo Y; Zhang W; Zhang H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads.
    Roosaare M; Puustusmaa M; Möls M; Vaher M; Remm M
    PeerJ; 2018; 6():e4588. PubMed ID: 29629246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PlasBin-flow: a flow-based MILP algorithm for plasmid contigs binning.
    Mane A; Faizrahnemoon M; Vinař T; Brejová B; Chauve C
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i288-i296. PubMed ID: 37387134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deeplasmid: deep learning accurately separates plasmids from bacterial chromosomes.
    Andreopoulos WB; Geller AM; Lucke M; Balewski J; Clum A; Ivanova NN; Levy A
    Nucleic Acids Res; 2022 Feb; 50(3):e17. PubMed ID: 34871418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.
    Ren J; Ahlgren NA; Lu YY; Fuhrman JA; Sun F
    Microbiome; 2017 Jul; 5(1):69. PubMed ID: 28683828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.