BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 37191734)

  • 41. Effects of Transcranial Direct-Current Stimulation on Neurosurgical Skill Acquisition: A Randomized Controlled Trial.
    Ciechanski P; Cheng A; Lopushinsky S; Hecker K; Gan LS; Lang S; Zareinia K; Kirton A
    World Neurosurg; 2017 Dec; 108():876-884.e4. PubMed ID: 28864400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulation and virtual reality in intracranial aneurysms neurosurgical training: a systematic review.
    Zaed I; Chibbaro S; Ganau M; Tinterri B; Bossi B; Peschillo S; Capo G; Costa F; Cardia A; Cannizzaro D
    J Neurosurg Sci; 2022 Dec; 66(6):494-500. PubMed ID: 35301837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificial intelligence-based methods for fusion of electronic health records and imaging data.
    Mohsen F; Ali H; El Hajj N; Shah Z
    Sci Rep; 2022 Oct; 12(1):17981. PubMed ID: 36289266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine Learning and Surgical Outcomes Prediction: A Systematic Review.
    Elfanagely O; Toyoda Y; Othman S; Mellia JA; Basta M; Liu T; Kording K; Ungar L; Fischer JP
    J Surg Res; 2021 Aug; 264():346-361. PubMed ID: 33848833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systematic Review of Factors Influencing Surgical Performance: Practical Recommendations for Microsurgical Procedures in Neurosurgery.
    Belykh E; Onaka NR; Abramov IT; Yağmurlu K; Byvaltsev VA; Spetzler RF; Nakaj P; Preul MC
    World Neurosurg; 2018 Apr; 112():e182-e207. PubMed ID: 29325962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep learning-based video-analysis of instrument motion in microvascular anastomosis training.
    Sugiyama T; Sugimori H; Tang M; Ito Y; Gekka M; Uchino H; Ito M; Ogasawara K; Fujimura M
    Acta Neurochir (Wien); 2024 Jan; 166(1):6. PubMed ID: 38214753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tactile Skill-Based Neurosurgical Simulators Are Effective and Inexpensive.
    Breese R; Piazza M; Quinsey C; Blatt JE
    World Neurosurg; 2020 May; 137():319-326. PubMed ID: 32059973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning.
    Mishra R; Narayanan MDK; Umana GE; Montemurro N; Chaurasia B; Deora H
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neurosurgical cadaveric and in vivo large animal training models for cranial and spinal approaches and techniques - a systematic review of the current literature.
    Morosanu CO; Nicolae L; Moldovan R; Farcasanu AS; Filip GA; Florian IS
    Neurol Neurochir Pol; 2019; 53(1):8-17. PubMed ID: 30614516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review of virtual reality simulators for neuroendoscopy.
    Baby B; Singh R; Suri A; Dhanakshirur RR; Chakraborty A; Kumar S; Kalra PK; Banerjee S
    Neurosurg Rev; 2020 Oct; 43(5):1255-1272. PubMed ID: 31444716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark.
    Wagner M; Müller-Stich BP; Kisilenko A; Tran D; Heger P; Mündermann L; Lubotsky DM; Müller B; Davitashvili T; Capek M; Reinke A; Reid C; Yu T; Vardazaryan A; Nwoye CI; Padoy N; Liu X; Lee EJ; Disch C; Meine H; Xia T; Jia F; Kondo S; Reiter W; Jin Y; Long Y; Jiang M; Dou Q; Heng PA; Twick I; Kirtac K; Hosgor E; Bolmgren JL; Stenzel M; von Siemens B; Zhao L; Ge Z; Sun H; Xie D; Guo M; Liu D; Kenngott HG; Nickel F; Frankenberg MV; Mathis-Ullrich F; Kopp-Schneider A; Maier-Hein L; Speidel S; Bodenstedt S
    Med Image Anal; 2023 May; 86():102770. PubMed ID: 36889206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo porcine training model for cranial neurosurgery.
    Regelsberger J; Eicker S; Siasios I; Hänggi D; Kirsch M; Horn P; Winkler P; Signoretti S; Fountas K; Dufour H; Barcia JA; Sakowitz O; Westermaier T; Sabel M; Heese O
    Neurosurg Rev; 2015 Jan; 38(1):157-63; discussion 163. PubMed ID: 25240530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utilizing a multilayer perceptron artificial neural network to assess a virtual reality surgical procedure.
    Alkadri S; Ledwos N; Mirchi N; Reich A; Yilmaz R; Driscoll M; Del Maestro RF
    Comput Biol Med; 2021 Sep; 136():104770. PubMed ID: 34426170
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utility of Virtual Spine Neurosurgery Education for Medical Students.
    Shlobin NA; Radwanski RE; Kortz MW; Rasouli JJ; Gibbs WN; Than KD; Baaj AA; Shin JH; Dahdaleh NS
    World Neurosurg; 2022 Jul; 163():179-186. PubMed ID: 35729819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Virtual Vision of Neurosurgery: How Augmented Reality and Virtual Reality are Transforming the Neurosurgical Operating Room.
    Durrani S; Onyedimma C; Jarrah R; Bhatti A; Nathani KR; Bhandarkar AR; Mualem W; Ghaith AK; Zamanian C; Michalopoulos GD; Alexander AY; Jean W; Bydon M
    World Neurosurg; 2022 Dec; 168():190-201. PubMed ID: 36208867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Effect of 3-Dimensional Simulation on Neurosurgical Skill Acquisition and Surgical Performance: A Review of the Literature.
    Clark AD; Barone DG; Candy N; Guilfoyle M; Budohoski K; Hofmann R; Santarius T; Kirollos R; Trivedi RA
    J Surg Educ; 2017; 74(5):828-836. PubMed ID: 28341408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of learning curves on a simulated neurosurgical task using metrics selected by artificial intelligence.
    Ledwos N; Mirchi N; Yilmaz R; Winkler-Schwartz A; Sawni A; Fazlollahi AM; Bissonnette V; Bajunaid K; Sabbagh AJ; Del Maestro RF
    J Neurosurg; 2022 Oct; 137(4):1160-1171. PubMed ID: 35120309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Systematic Review of Simulation-Based Training in Neurosurgery, Part 2: Spinal and Pediatric Surgery, Neurointerventional Radiology, and Nontechnical Skills.
    Patel EA; Aydin A; Cearns M; Dasgupta P; Ahmed K
    World Neurosurg; 2020 Jan; 133():e874-e892. PubMed ID: 31541754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.