BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37191787)

  • 1. Genome-Wide Analysis of Palindrome Formation with Next-Generation Sequencing (GAPF-Seq) and a Bioinformatics Pipeline for Assessing De Novo Palindromes in Cancer Genomes.
    Murata MM; Giuliano AE; Tanaka H
    Methods Mol Biol; 2023; 2660():13-22. PubMed ID: 37191787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large DNA palindromes as a common form of structural chromosome aberrations in human cancers.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Hum Cell; 2006 Feb; 19(1):17-23. PubMed ID: 16643603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAP-Seq: a method for identification of DNA palindromes.
    Yang H; Volfovsky N; Rattray A; Chen X; Tanaka H; Strathern J
    BMC Genomics; 2014 May; 15(1):394. PubMed ID: 24885769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of palindromes as platforms for DNA amplification in breast cancer.
    Guenthoer J; Diede SJ; Tanaka H; Chai X; Hsu L; Tapscott SJ; Porter PL
    Genome Res; 2012 Feb; 22(2):232-45. PubMed ID: 21752925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Nat Genet; 2005 Mar; 37(3):320-7. PubMed ID: 15711546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis.
    Neiman PE; Elsaesser K; Loring G; Kimmel R
    PLoS Genet; 2008 Jul; 4(7):e1000132. PubMed ID: 18636108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer.
    Tanaka H; Cao Y; Bergstrom DA; Kooperberg C; Tapscott SJ; Yao MC
    Mol Cell Biol; 2007 Mar; 27(6):1993-2002. PubMed ID: 17242211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer.
    Svetec Miklenić M; Svetec IK
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Practical Approach for Targeting Structural Variants Genome-wide in Plasma Cell-free DNA.
    Tanaka H; Murata M; Igari F; Urbanowicz R; Mouakkad L; Kim S; Chen Z; Di Vizio D; Posadas E; Giuliano A
    Res Sq; 2024 Jan; ():. PubMed ID: 38260372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells.
    Tanaka H; Tapscott SJ; Trask BJ; Yao MC
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8772-7. PubMed ID: 12060719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks.
    Narayanan V; Mieczkowski PA; Kim HM; Petes TD; Lobachev KS
    Cell; 2006 Jun; 125(7):1283-96. PubMed ID: 16814715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic instability during Myc-induced lymphomagenesis in the bursa of Fabricius.
    Neiman PE; Kimmel R; Icreverzi A; Elsaesser K; Bowers SJ; Burnside J; Delrow J
    Oncogene; 2006 Oct; 25(47):6325-35. PubMed ID: 16652139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae.
    Butler DK; Gillespie D; Steele B
    Genetics; 2002 Jul; 161(3):1065-75. PubMed ID: 12136011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing.
    Qin Z; Cohen SN
    Genes Dev; 2000 Jul; 14(14):1789-96. PubMed ID: 10898793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithmic approach for breakage-fusion-bridge detection in tumor genomes.
    Zakov S; Kinsella M; Bafna V
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5546-51. PubMed ID: 23503850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing breakage fusion bridge architectures using noisy copy numbers.
    Zakov S; Bafna V
    J Comput Biol; 2015 Jun; 22(6):577-94. PubMed ID: 26020441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot study on the prevalence of DNA palindromes in breast cancer genomes.
    Subramanian S; Chaparala S; Avali V; Ganapathiraju MK
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):73. PubMed ID: 28117658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Practical Approach for Targeting Structural Variants Genome-wide in Plasma Cell-free DNA.
    Murata MM; Igari F; Urbanowicz R; Mouakkad L; Kim S; Chen Z; DiVizio D; Posadas EM; Giuliano AE; Tanaka H
    bioRxiv; 2024 Jan; ():. PubMed ID: 37961589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology-mediated end-capping as a primary step of sister chromatid fusion in the breakage-fusion-bridge cycles.
    Marotta M; Chen X; Watanabe T; Faber PW; Diede SJ; Tapscott S; Tubbs R; Kondratova A; Stephens R; Tanaka H
    Nucleic Acids Res; 2013 Nov; 41(21):9732-40. PubMed ID: 23975201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.