These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37191877)

  • 1. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system.
    Alalmaie A; Diaf S; Khashan R
    J Genet Eng Biotechnol; 2023 May; 21(1):60. PubMed ID: 37191877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of CRISPR-Cas systems by Tn7-like transposons.
    Peters JE; Makarova KS; Shmakov S; Koonin EV
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7358-E7366. PubMed ID: 28811374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector.
    Wang S; Gabel C; Siddique R; Klose T; Chang L
    Cell; 2023 Sep; 186(19):4204-4215.e19. PubMed ID: 37557170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria.
    Hsieh SC; Peters JE
    Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition.
    Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE
    Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of diverse type I-F CRISPR-associated transposons.
    Roberts A; Nethery MA; Barrangou R
    Nucleic Acids Res; 2022 Nov; 50(20):11670-11681. PubMed ID: 36384163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-guided genome engineering: paradigm shift towards transposons.
    Chang CW; Truong VA; Pham NN; Hu YC
    Trends Biotechnol; 2024 Aug; 42(8):970-985. PubMed ID: 38443218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition.
    Xiao R; Wang S; Han R; Li Z; Gabel C; Mukherjee IA; Chang L
    Mol Cell; 2021 Nov; 81(21):4457-4466.e5. PubMed ID: 34450043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
    McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF
    BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons.
    Hu K; Chia-Wei C; Wilke CO; Finkelstein IJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposons and CRISPR: Rewiring Gene Editing.
    Tenjo-Castaño F; Montoya G; Carabias A
    Biochemistry; 2023 Dec; 62(24):3521-3532. PubMed ID: 36130724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
    Petassi MT; Hsieh SC; Peters JE
    Cell; 2020 Dec; 183(7):1757-1771.e18. PubMed ID: 33271061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing.
    Vo PLH; Acree C; Smith ML; Sternberg SH
    Mob DNA; 2021 Jun; 12(1):13. PubMed ID: 34103093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.