These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37191877)

  • 41. A glance at genome editing with CRISPR-Cas9 technology.
    Barman A; Deb B; Chakraborty S
    Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.
    Anderson EM; Haupt A; Schiel JA; Chou E; Machado HB; Strezoska Ž; Lenger S; McClelland S; Birmingham A; Vermeulen A; Smith Av
    J Biotechnol; 2015 Oct; 211():56-65. PubMed ID: 26189696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classification and evolution of type II CRISPR-Cas systems.
    Chylinski K; Makarova KS; Charpentier E; Koonin EV
    Nucleic Acids Res; 2014 Jun; 42(10):6091-105. PubMed ID: 24728998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving CRISPR Gene Editing Efficiency by Proximal dCas9 Targeting.
    Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD
    Bio Protoc; 2017 Aug; 7(15):e2432. PubMed ID: 34541154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploiting CRISPR-Cas immune systems for genome editing in bacteria.
    Barrangou R; van Pijkeren JP
    Curr Opin Biotechnol; 2016 Feb; 37():61-68. PubMed ID: 26629846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Advances in the RNA-targeting CRISPR-Cas systems].
    Hong T; Luo Q
    Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1363-1373. PubMed ID: 37154311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells.
    Chen Y; Liu J; Zhi S; Zheng Q; Ma W; Huang J; Liu Y; Liu D; Liang P; Songyang Z
    Nat Commun; 2020 Jun; 11(1):3136. PubMed ID: 32561716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering.
    Saifaldeen M; Al-Ansari DE; Ramotar D; Aouida M
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233344
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species.
    Biery MC; Lopata M; Craig NL
    J Mol Biol; 2000 Mar; 297(1):25-37. PubMed ID: 10704304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems.
    Wada N; Osakabe K; Osakabe Y
    Plant Physiol; 2022 Mar; 188(4):1825-1837. PubMed ID: 35099553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple DNA processing reactions underlie Tn7 transposition.
    Gary PA; Biery MC; Bainton RJ; Craig NL
    J Mol Biol; 1996 Mar; 257(2):301-16. PubMed ID: 8609625
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transposon mutagenesis libraries reveal novel molecular requirements during CRISPR RNA-guided DNA integration.
    Walker MWG; Klompe SE; Zhang DJ; Sternberg SH
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.