These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37191934)

  • 41. Recent Advances in n-Type Polymers for All-Polymer Solar Cells.
    Genene Z; Mammo W; Wang E; Andersson MR
    Adv Mater; 2019 May; 31(22):e1807275. PubMed ID: 30790384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.
    Lee JH; Park CG; Kim A; Kim HJ; Kim Y; Park S; Cho MJ; Choi DH
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18974-18983. PubMed ID: 29761694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells.
    Kini GP; Lee EJ; Jeon SJ; Moon DK
    Macromol Rapid Commun; 2021 May; 42(9):e2000743. PubMed ID: 33644922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells.
    Shi Y; Ma R; Wang X; Liu T; Li Y; Fu S; Yang K; Wang Y; Yu C; Jiao L; Wei X; Fang J; Xue D; Yan H
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5740-5749. PubMed ID: 35040622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of ITIC Derivatives with Extended π-Conjugation as Non-Fullerene Acceptors for Organic Solar Cells.
    Kim HS; Song CE; Ha JW; Lee S; Rasool S; Lee HK; Shin WS; Hwang DH
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47121-47130. PubMed ID: 31755688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.
    Bin H; Zhang ZG; Gao L; Chen S; Zhong L; Xue L; Yang C; Li Y
    J Am Chem Soc; 2016 Apr; 138(13):4657-64. PubMed ID: 26997357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells.
    Sun H; Liu B; Ma Y; Lee JW; Yang J; Wang J; Li Y; Li B; Feng K; Shi Y; Zhang B; Han D; Meng H; Niu L; Kim BJ; Zheng Q; Guo X
    Adv Mater; 2021 Sep; 33(37):e2102635. PubMed ID: 34338383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15.
    Luo Z; Liu T; Ma R; Xiao Y; Zhan L; Zhang G; Sun H; Ni F; Chai G; Wang J; Zhong C; Zou Y; Guo X; Lu X; Chen H; Yan H; Yang C
    Adv Mater; 2020 Dec; 32(48):e2005942. PubMed ID: 33118246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Naphtho[1,2-b:5,6-b']dithiophene-Based Conjugated Polymers for Fullerene-Free Inverted Polymer Solar Cells.
    Jiang Z; Li H; Wang Z; Zhang J; Zhang Y; Lu K; Wei Z
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700872. PubMed ID: 29573008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Easily Accessible Low Band Gap Polymer for Efficient Nonfullerene Polymer Solar Cells with a Low E
    Park M; Jung JW
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5435-5440. PubMed ID: 30623665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Efficiency Nonfullerene Polymer Solar Cells with Band gap and Absorption Tunable Donor/Acceptor Random Copolymers.
    Kim DH; Trang Bui TT; Rasool S; Song CE; Lee HK; Lee SK; Lee JC; So WW; Shin WS
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2189-2196. PubMed ID: 30561179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and characterization of new silafluorene-based copolymers for polymer solar cells.
    Bathula CD; Park SJ; Lee JC; Shin WS; Moon SJ; Lee SK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6002-7. PubMed ID: 25936045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.
    Dou C; Long X; Ding Z; Xie Z; Liu J; Wang L
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1436-40. PubMed ID: 26663513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel Pyrrolo [3,4-b] Dithieno [3, 2-f:2″,3″-h] Quinoxaline-8,10 (9H)-Dione Based Wide Bandgap Conjugated Copolymers for Bulk Heterojunction Polymer Solar Cells.
    Keshtov ML; Khokhlov AR; Godovsky DY; Ostapov IE; Alekseev VG; Xie Z; Chayal G; Sharma GD
    Macromol Rapid Commun; 2022 May; 43(9):e2200060. PubMed ID: 35218257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulk-Heterojunction or Layer-By-Layer Structure.
    Xu W; Ma X; Son JH; Jeong SY; Niu L; Xu C; Zhang S; Zhou Z; Gao J; Woo HY; Zhang J; Wang J; Zhang F
    Small; 2022 Jan; 18(4):e2104215. PubMed ID: 34841671
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer Design of High-Performance Polymer Solar Cells.
    Xu Y; Ji Q; Yin L; Zhang N; Liu T; Li N; He X; Wen G; Zhang W; Yu L; Murto P; Xu X
    ACS Appl Mater Interfaces; 2021 May; 13(20):23993-24004. PubMed ID: 33974390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells.
    Wang X; Wang Z; Li M; Tu L; Wang K; Xiao D; Guo Q; Zhou M; Wei X; Shi Y; Zhou E
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Performance All-Polymer Solar Cells Enabled by n-Type Polymers with an Ultranarrow Bandgap Down to 1.28 eV.
    Feng K; Huang J; Zhang X; Wu Z; Shi S; Thomsen L; Tian Y; Woo HY; McNeill CR; Guo X
    Adv Mater; 2020 Jul; 32(30):e2001476. PubMed ID: 32519429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Near-Infrared Nonfullerene Acceptors Based on 4H-Cyclopenta[1,2-b:5,4-b']dithiophene for Organic Solar Cells and Organic Field-Effect Transistors.
    Yuan L; Liang S; Xiao C; Chen Q; Li W
    Chem Asian J; 2021 Dec; 16(24):4171-4178. PubMed ID: 34738329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.