These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37191967)

  • 1. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force.
    Leijding C; Viken I; Bruton JD; Andersson DC; Cheng AJ; Westerblad H
    FASEB J; 2023 Jun; 37(6):e22978. PubMed ID: 37191967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
    Dahlstedt AJ; Katz A; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of parvalbumin in fatigue-induced changes in force and cytosolic calcium transients in intact single mouse myofibers.
    Nogueira L; Gilmore NK; Hogan MC
    J Appl Physiol (1985); 2022 Apr; 132(4):1041-1053. PubMed ID: 35238653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderately elevated extracellular [K
    Pedersen KK; Cheng AJ; Westerblad H; Olesen JH; Overgaard K
    Am J Physiol Cell Physiol; 2019 Nov; 317(5):C900-C909. PubMed ID: 31411922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.
    Bruton JD; Place N; Yamada T; Silva JP; Andrade FH; Dahlstedt AJ; Zhang SJ; Katz A; Larsson NG; Westerblad H
    J Physiol; 2008 Jan; 586(1):175-84. PubMed ID: 18006575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue preconditioning increases fatigue resistance in mouse flexor digitorum brevis muscles with non-functioning K(ATP) channels.
    Boudreault L; Cifelli C; Bourassa F; Scott K; Renaud JM
    J Physiol; 2010 Nov; 588(Pt 22):4549-62. PubMed ID: 20855438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres.
    Nielsen J; Cheng AJ; Ørtenblad N; Westerblad H
    J Physiol; 2014 May; 592(9):2003-12. PubMed ID: 24591577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice.
    Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H
    J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Ca
    Glass LD; Cheng AJ; MacIntosh BR
    Pflugers Arch; 2018 Aug; 470(8):1243-1254. PubMed ID: 29671103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase.
    Dahlstedt AJ; Katz A; Wieringa B; Westerblad H
    FASEB J; 2000 May; 14(7):982-90. PubMed ID: 10783153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2(*-) production at 37 degrees C plays a critical role in depressing tetanic force of isolated rat and mouse skeletal muscle.
    Edwards JN; Macdonald WA; van der Poel C; Stephenson DG
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C650-60. PubMed ID: 17459949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast skeletal muscle troponin activator CK-2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction.
    Cheng AJ; Hwee DT; Kim LH; Durham N; Yang HT; Hinken AC; Kennedy AR; Terjung RL; Jasper JR; Malik FI; Westerblad H
    J Physiol; 2019 Sep; 597(17):4615-4625. PubMed ID: 31246276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic [Ca(2+)](i) in mouse skeletal muscle.
    Dahlstedt AJ; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 3):639-49. PubMed ID: 11410623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres.
    Cheng AJ; Bruton JD; Lanner JT; Westerblad H
    J Physiol; 2015 Jan; 593(2):457-72. PubMed ID: 25630265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.
    Head SI; Greenaway B; Chan S
    PLoS One; 2011; 6(8):e22742. PubMed ID: 21850234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.