These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37192047)

  • 1. Simple and Versatile Platforms for Manipulating Light with Matter: Strong Light-Matter Coupling in Fully Solution-Processed Optical Microcavities.
    Strang A; Quirós-Cordero V; Grégoire P; Pla S; Fernández-Lázaro F; Sastre-Santos Á; Silva-Acuña C; Stavrinou PN; Stingelin N
    Adv Mater; 2024 May; 36(20):e2212056. PubMed ID: 37192047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Solution-Processed Distributed Bragg Reflectors for Microcavity Polariton Applications.
    Palo E; Papachatzakis MA; Abdelmagid A; Qureshi H; Kumar M; Salomäki M; Daskalakis KS
    J Phys Chem C Nanomater Interfaces; 2023 Jul; 127(29):14255-14262. PubMed ID: 37529668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Strong Light-Matter Coupling in an Open Microcavity Based on Reflective Germanium Coatings.
    Yitzhari R; Kapon O; Tischler YR
    J Phys Chem A; 2022 Feb; 126(7):1282-1288. PubMed ID: 35167287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong Coupling beyond the Light-Line.
    Menghrajani KS; Barnes WL
    ACS Photonics; 2020 Sep; 7(9):2448-2459. PubMed ID: 33163580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcavity phonon polaritons from the weak to the ultrastrong phonon-photon coupling regime.
    Barra-Burillo M; Muniain U; Catalano S; Autore M; Casanova F; Hueso LE; Aizpurua J; Esteban R; Hillenbrand R
    Nat Commun; 2021 Oct; 12(1):6206. PubMed ID: 34707119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress of Strong Exciton-Photon Coupling in Lead Halide Perovskites.
    Du W; Zhang S; Zhang Q; Liu X
    Adv Mater; 2019 Nov; 31(45):e1804894. PubMed ID: 30398690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room Temperature Coherently Coupled Exciton-Polaritons in Two-Dimensional Organic-Inorganic Perovskite.
    Wang J; Su R; Xing J; Bao D; Diederichs C; Liu S; Liew TCH; Chen Z; Xiong Q
    ACS Nano; 2018 Aug; 12(8):8382-8389. PubMed ID: 30089200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastrong coupling in Super Yellow polymer microcavities and development of highly efficient polariton light-emitting diodes and light-emitting transistors.
    Chang JF; Zheng YC; Chiang CY; Huang CK; Jaing CC
    Opt Express; 2023 Feb; 31(4):6849-6861. PubMed ID: 36823932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Light-Matter Coupling and Hybridization of Molecular Vibrations in a Low-Loss Infrared Microcavity.
    Muallem M; Palatnik A; Nessim GD; Tischler YR
    J Phys Chem Lett; 2016 Jun; 7(11):2002-8. PubMed ID: 27159242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-gap polaritons in uniformly filled microcavities.
    Litinskaya M; Agranovich VM
    J Phys Condens Matter; 2009 Oct; 21(41):415301. PubMed ID: 21693982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Bragg polaritons and nonlinear emission from a hybrid metal-unfolded ZnSe-based microcavity.
    Rahman SS; Klein T; Gutowski J; Klembt S; Sebald K
    Sci Rep; 2017 Apr; 7(1):767. PubMed ID: 28396601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor.
    Wurdack M; Yun T; Katzer M; Truscott AG; Knorr A; Selig M; Ostrovskaya EA; Estrecho E
    Nat Commun; 2023 Feb; 14(1):1026. PubMed ID: 36823076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity.
    Coles DM; Somaschi N; Michetti P; Clark C; Lagoudakis PG; Savvidis PG; Lidzey DG
    Nat Mater; 2014 Jul; 13(7):712-9. PubMed ID: 24793357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Parametric Scattering of Exciton Polaritons in Perovskite Microcavities.
    Wu J; Ghosh S; Su R; Fieramosca A; Liew TCH; Xiong Q
    Nano Lett; 2021 Apr; 21(7):3120-3126. PubMed ID: 33788571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of light-matter interaction parameters in organic single-crystal microcavities.
    Nishimura T; Yamashita K; Takahashi S; Yamao T; Hotta S; Yanagi H; Nakayama M
    Opt Lett; 2018 Mar; 43(5):1047-1050. PubMed ID: 29489777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
    Wall F; Mey O; Schneider LM; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8303. PubMed ID: 32427933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
    Keeling J; Kéna-Cohen S
    Annu Rev Phys Chem; 2020 Apr; 71():435-459. PubMed ID: 32126177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralong-Range Polariton-Assisted Energy Transfer in Organic Microcavities.
    Georgiou K; Jayaprakash R; Othonos A; Lidzey DG
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16661-16667. PubMed ID: 33908681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.