These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37192128)
1. Changes in Eye Tracking Features Across Periods of Overpressure Exposure. Rao HM; McGuire SM; Halford E; Smalt CJ Mil Med; 2023 Nov; 188(11-12):e3398-e3406. PubMed ID: 37192128 [TBL] [Abstract][Full Text] [Related]
2. Significant Mitigation of Blast Overpressure Exposure During Training by Adjustment of Body Position as Demonstrated With Field Data. Wiri S; Wagner C; Longwell J; Adams T; Whitty J; Massow T; Reid J; Dunbar C; Graves W; Gonzales A; Needham CE; Leonessa F; Duckworth JL Mil Med; 2024 May; 189(5-6):e1154-e1160. PubMed ID: 37966502 [TBL] [Abstract][Full Text] [Related]
3. Dynamic monitoring of service members to quantify blast exposure levels during combat training using BlackBox Biometrics Blast Gauges: explosive breaching, shoulder-fired weapons, artillery, mortars, and 0.50 caliber guns. Wiri S; Massow T; Reid J; Whitty J; Dunbar C; Graves W; Gonzales A; Ortley D; Longwell J; Needham CE; Ziegle A; Phan V; Leonessa F; Duckworth JL Front Neurol; 2023; 14():1175671. PubMed ID: 37305738 [TBL] [Abstract][Full Text] [Related]
4. Cumulative Blast Impulse Is Predictive for Changes in Chronic Neurobehavioral Symptoms Following Low Level Blast Exposure during Military Training. McEvoy C; Crabtree A; Case J; Means GE; Muench P; Thomas RG; Ivory RA; Mihalik J; Meabon JS Mil Med; 2024 Aug; 189(9-10):e2069-e2077. PubMed ID: 38553989 [TBL] [Abstract][Full Text] [Related]
5. An Exploratory Comparison of Water-Tamped and -Untamped Explosive Breaches: Practical Applications for the Tactical Community via a Pilot Study. Kamimori GH; McQuiggan W; Ramos AN; LaValle CR; Misistia A; Salib J; Egnoto MJ J Spec Oper Med; 2022 Dec; 22(4):56-59. PubMed ID: 36525013 [TBL] [Abstract][Full Text] [Related]
6. Using Body-worn Accelerometers to Detect Physiological Changes During Periods of Blast Overpressure Exposure. Williamson JR; Kim J; Halford E; Smalt CJ; Rao HM Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():926-932. PubMed ID: 36086014 [TBL] [Abstract][Full Text] [Related]
7. An End-User Evaluation of Blast Overpressure and Accelerative Impact Body-Worn Sensors. Smith CD; Reddy MK; Sims ST; Conen KM; Krauss SW Mil Med; 2024 Aug; 189(Suppl 3):276-283. PubMed ID: 39160883 [TBL] [Abstract][Full Text] [Related]
8. Development of a Fast-Running Algorithm to Approximate Incident Blast Parameters Using Body-Mounted Sensor Measurements. Wiri S; Needham C; Ortley D; Duckworth J; Gonzales A; Walilko T; Bentley TB Mil Med; 2022 Oct; 187(11-12):e1354-e1362. PubMed ID: 34626472 [TBL] [Abstract][Full Text] [Related]
10. Repetitive Low-level Blast Exposure and Neurocognitive Effects in Army Ranger Mortarmen. Woodall JLA; Sak JA; Cowdrick KR; Bove Muñoz BM; McElrath JH; Trimpe GR; Mei Y; Myhre RL; Rains JK; Hutchinson CR Mil Med; 2023 Mar; 188(3-4):e771-e779. PubMed ID: 34557921 [TBL] [Abstract][Full Text] [Related]
11. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Jiang S; Smith K; Gan RZ Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647 [TBL] [Abstract][Full Text] [Related]
12. Experimental Study on Intracranial Pressure and Biomechanical Response in Rats Under the Blast Wave. Huang X; Xia B; Chang L; Liao Z; Zhao H; Zhang L; Cai Z J Neurotrauma; 2024 Mar; 41(5-6):671-684. PubMed ID: 35906796 [TBL] [Abstract][Full Text] [Related]
13. Sensor orientation and other factors which increase the blast overpressure reporting errors. Misistia A; Skotak M; Cardenas A; Alay E; Chandra N; Kamimori GH PLoS One; 2020; 15(10):e0240262. PubMed ID: 33031423 [TBL] [Abstract][Full Text] [Related]
14. Hearing Loss and Irritability Reporting Without Vestibular Differences in Explosive Breaching Professionals. Modica CM; Johnson BR; Zalewski C; King K; Brewer C; King JE; Yarnell AM; LoPresti ML; Walker PB; Dell KC; Polejaeva E; Quick A; Arnold B; Wassermann EM; Stone JR; Ahlers ST; Carr W Front Neurol; 2020; 11():588377. PubMed ID: 33391154 [No Abstract] [Full Text] [Related]
15. Exposure to sublethal blast overpressure reduces the food intake and exercise performance of rats. Bauman RA; Elsayed N; Petras JM; Widholm J Toxicology; 1997 Jul; 121(1):65-79. PubMed ID: 9217316 [TBL] [Abstract][Full Text] [Related]
16. Transfer Function for Relative Blast Overpressure Through Porcine and Human Skulls In Situ. Argo Iv TF; Wagner CD; Walilko TJ; Bentley TB Mil Med; 2023 Mar; 188(3-4):e607-e614. PubMed ID: 34677614 [TBL] [Abstract][Full Text] [Related]
17. Pulmonary injury risk curves and behavioral changes from blast overpressure exposures of varying frequency and intensity in rats. Sajja VS; Statz JK; Walker LPB; Gist ID; Wilder DM; Ahlers ST; Long JB Sci Rep; 2020 Oct; 10(1):16644. PubMed ID: 33024181 [TBL] [Abstract][Full Text] [Related]
18. Development of a Minipig Model of BINT From Blast Exposure Using a Repeatable Mobile Shock Expansion Tube. McNeil E; Walilko T; Hulbert LE; VanMeter JW; LaConte S; VandeVord P; Zai L; Bentley TB Mil Med; 2023 Mar; 188(3-4):e591-e599. PubMed ID: 34677612 [TBL] [Abstract][Full Text] [Related]