BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 37192223)

  • 21. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.
    García-Prat L; Sousa-Victor P; Muñoz-Cánoves P
    FEBS J; 2013 Sep; 280(17):4051-62. PubMed ID: 23452120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells.
    Muñoz-Cánoves P; Neves J; Sousa-Victor P
    FEBS J; 2020 Feb; 287(3):406-416. PubMed ID: 31854082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells.
    De Luca G; Ferretti R; Bruschi M; Mezzaroma E; Caruso M
    Stem Cells; 2013 Nov; 31(11):2478-91. PubMed ID: 23897741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing the Functional Heterogeneity of Muscle Stem Cells.
    Kitajima Y; Ogawa S; Ono Y
    Methods Mol Biol; 2016; 1516():183-193. PubMed ID: 27052612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise.
    Franco I; Fernandez-Gonzalo R; Vrtačnik P; Lundberg TR; Eriksson M; Gustafsson T
    Int Rev Cell Mol Biol; 2019; 346():157-200. PubMed ID: 31122394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
    Chen JF; Tao Y; Li J; Deng Z; Yan Z; Xiao X; Wang DZ
    J Cell Biol; 2010 Sep; 190(5):867-79. PubMed ID: 20819939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of skeletal muscle stem cells by fibroblast growth factors.
    Pawlikowski B; Vogler TO; Gadek K; Olwin BB
    Dev Dyn; 2017 May; 246(5):359-367. PubMed ID: 28249356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration.
    Sreenivasan K; Rodríguez-delaRosa A; Kim J; Mesquita D; Segalés J; Arco PG; Espejo I; Ianni A; Di Croce L; Relaix F; Redondo JM; Braun T; Serrano AL; Perdiguero E; Muñoz-Cánoves P
    Stem Cell Reports; 2021 Sep; 16(9):2089-2098. PubMed ID: 34450038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function.
    Jang YC; Sinha M; Cerletti M; Dall'Osso C; Wagers AJ
    Cold Spring Harb Symp Quant Biol; 2011; 76():101-11. PubMed ID: 21960527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle stem cell aging: identifying ways to induce tissue rejuvenation.
    Sousa-Victor P; Neves J; Muñoz-Cánoves P
    Mech Ageing Dev; 2020 Jun; 188():111246. PubMed ID: 32311419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.
    Ryall JG
    FEBS J; 2013 Sep; 280(17):4004-13. PubMed ID: 23402377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geroconversion of aged muscle stem cells under regenerative pressure.
    Sousa-Victor P; Perdiguero E; Muñoz-Cánoves P
    Cell Cycle; 2014; 13(20):3183-90. PubMed ID: 25485497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic Identification of Genes Regulating Muscle Stem Cell Self-Renewal and Differentiation.
    Sreenivasan K; Braun T; Kim J
    Methods Mol Biol; 2017; 1556():343-353. PubMed ID: 28247360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lying low but ready for action: the quiescent muscle satellite cell.
    Montarras D; L'honoré A; Buckingham M
    FEBS J; 2013 Sep; 280(17):4036-50. PubMed ID: 23735050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of muscle stem cell function.
    von Maltzahn J
    Vitam Horm; 2021; 116():295-311. PubMed ID: 33752822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche.
    Collins CA; Olsen I; Zammit PS; Heslop L; Petrie A; Partridge TA; Morgan JE
    Cell; 2005 Jul; 122(2):289-301. PubMed ID: 16051152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander.
    Anderson JE
    J Exp Biol; 2006 Jun; 209(Pt 12):2276-92. PubMed ID: 16731804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aging, stem cells and tissue regeneration: lessons from muscle.
    Conboy IM; Rando TA
    Cell Cycle; 2005 Mar; 4(3):407-10. PubMed ID: 15725724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration.
    Le Grand F; Grifone R; Mourikis P; Houbron C; Gigaud C; Pujol J; Maillet M; Pagès G; Rudnicki M; Tajbakhsh S; Maire P
    J Cell Biol; 2012 Sep; 198(5):815-32. PubMed ID: 22945933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury.
    Rahman MM; Ghosh M; Subramani J; Fong GH; Carlson ME; Shapiro LH
    Stem Cells; 2014 Jun; 32(6):1564-77. PubMed ID: 24307555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.