BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37193050)

  • 1. Deciphering aging at three-dimensional genomic resolution.
    Liu Z; Belmonte JCI; Zhang W; Qu J; Liu GH
    Cell Insight; 2022 Jun; 1(3):100034. PubMed ID: 37193050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging.
    Liu Z; Ji Q; Ren J; Yan P; Wu Z; Wang S; Sun L; Wang Z; Li J; Sun G; Liang C; Sun R; Jiang X; Hu J; Ding Y; Wang Q; Bi S; Wei G; Cao G; Zhao G; Wang H; Zhou Q; Belmonte JCI; Qu J; Zhang W; Liu GH
    Dev Cell; 2022 Jun; 57(11):1347-1368.e12. PubMed ID: 35613614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The senescent cell epigenome.
    Yang N; Sen P
    Aging (Albany NY); 2018 Nov; 10(11):3590-3609. PubMed ID: 30391936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics.
    Reece AS; Hulse GK
    Front Psychiatry; 2023; 14():1182535. PubMed ID: 37732074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence.
    Zhang X; Liu X; Du Z; Wei L; Fang H; Dong Q; Niu J; Li Y; Gao J; Zhang MQ; Xie W; Wang X
    Genome Res; 2021 Jul; 31(7):1121-1135. PubMed ID: 34140314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional impact of nuclear reorganization in cellular senescence.
    Rocha A; Dalgarno A; Neretti N
    Brief Funct Genomics; 2022 Jan; 21(1):24-34. PubMed ID: 33755107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic biomarkers in aging and longevity: Current and future application.
    Izadi M; Sadri N; Abdi A; Serajian S; Jalalei D; Tahmasebi S
    Life Sci; 2024 Jun; 351():122842. PubMed ID: 38879158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Role of Histone Changes in Aging.
    Yi SJ; Kim K
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic Regulation of Cellular Senescence.
    Crouch J; Shvedova M; Thanapaul RJRS; Botchkarev V; Roh D
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Histone Code of Senescence.
    Paluvai H; Di Giorgio E; Brancolini C
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of chromosome architecture in replicative cellular senescence.
    Criscione SW; De Cecco M; Siranosian B; Zhang Y; Kreiling JA; Sedivy JM; Neretti N
    Sci Adv; 2016 Feb; 2(2):e1500882. PubMed ID: 26989773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Link Between Epigenetic Clocks for Aging and Senescence.
    Wagner W
    Front Genet; 2019; 10():303. PubMed ID: 31001330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenomic and enhancer dysregulation in uterine leiomyomas.
    Mlodawska OW; Saini P; Parker JB; Wei JJ; Bulun SE; Simon MA; Chakravarti D
    Hum Reprod Update; 2022 Jun; 28(4):518-547. PubMed ID: 35199155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Postnatal epigenome-mediated aging control and global trends].
    Hayano M
    Nihon Ronen Igakkai Zasshi; 2024; 61(1):1-12. PubMed ID: 38583963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin Architectural Changes during Cellular Senescence and Aging.
    Sun L; Yu R; Dang W
    Genes (Basel); 2018 Apr; 9(4):. PubMed ID: 29659513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of Aging and Cancer Epigenetic Signatures across Human and Mouse.
    Pérez RF; Tejedor JR; Santamarina-Ojeda P; Martínez VL; Urdinguio RG; Villamañán L; Candiota AP; Sarró NMV; Barradas M; Fernandez-Marcos PJ; Serrano M; Fernández AF; Fraga MF
    Mol Biol Evol; 2021 Jul; 38(8):3415-3435. PubMed ID: 33871658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics recording varied environment and complex cell events represents the origin of cellular aging.
    Guo XJ; Yang D; Zhang XY
    J Zhejiang Univ Sci B; 2019 Jul; 20(7):550-562. PubMed ID: 31168969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of mesenchymal stem cell aging through histone modifications.
    Sun Y; Zhang H; Qiu T; Liao L; Su X
    Genes Dis; 2023 Nov; 10(6):2443-2456. PubMed ID: 37554203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking the aging epigenetic barrier.
    Sikder S; Arunkumar G; Melters DP; Dalal Y
    Front Cell Dev Biol; 2022; 10():943519. PubMed ID: 35966762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.