BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37193618)

  • 1. Artificial intelligence assisted whole organ pancreatic fat estimation on magnetic resonance imaging and correlation with pancreas attenuation on computed tomography.
    Janssens LP; Takahashi H; Nagayama H; Nugen F; Bamlet WR; Oberg AL; Fuemmeler E; Goenka AH; Erickson BJ; Takahashi N; Majumder S
    Pancreatology; 2023 Aug; 23(5):556-562. PubMed ID: 37193618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer.
    Fukui H; Hori M; Fukuda Y; Onishi H; Nakamoto A; Ota T; Ogawa K; Ninomiya K; Tatsumi M; Osuga K; Yamada D; Eguchi H; Miyoshi E; Tomiyama N
    Eur J Radiol; 2019 Sep; 118():25-31. PubMed ID: 31439250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated whole-volume measurement of CT fat fraction of the pancreas: correlation with Dixon MR imaging.
    Tanabe M; Higashi M; Tanabe M; Kawano Y; Inoue A; Narikiyo K; Kobayashi T; Ueda T; Ito K
    Br J Radiol; 2023 Jun; 96(1146):20220937. PubMed ID: 37017644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining age and sex-specific distribution of pancreatic whole-gland CT attenuation using artificial intelligence aided image segmentation: Associations with body composition and pancreatic cancer risk.
    Janssens LP; Weston AD; Singh D; Spears G; Harmsen WS; Takahashi N; Philbrick KA; Erickson BJ; Abu Dayyeh BK; Chari ST; Chandrasekhara V; Gleeson FC; Levy MJ; Pearson RK; Petersen BT; Vege SS; Majumder S
    Pancreatology; 2021 Dec; 21(8):1524-1530. PubMed ID: 34507900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional analysis of pancreatic fat by fat-water magnetic resonance imaging provides detailed characterization of pancreatic steatosis with improved reproducibility.
    Kato S; Iwasaki A; Kurita Y; Arimoto J; Yamamoto T; Hasegawa S; Sato T; Imajo K; Hosono K; Kobayashi N; Yoneda M; Higurashi T; Kubota K; Utsunomiya D; Nakajima A
    PLoS One; 2019; 14(12):e0224921. PubMed ID: 31790429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Liver Fat Content With Unenhanced MDCT: Phantom and Clinical Correlation With MRI Proton Density Fat Fraction.
    Pickhardt PJ; Graffy PM; Reeder SB; Hernando D; Li K
    AJR Am J Roentgenol; 2018 Sep; 211(3):W151-W157. PubMed ID: 30016142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying steatosis in the liver and pancreas with MRI in patient with chronic liver disease.
    Vieira J; Amorim J; Martí-Bonmatí L; Alberich-Bayarri Á; França M
    Radiologia (Engl Ed); 2020; 62(3):222-228. PubMed ID: 31932016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancreas fat quantification with quantitative CT: an MRI correlation analysis.
    Yao WJ; Guo Z; Wang L; Li K; Saba L; Guglielmi G; Cheng XG; Brown JK; Blake GM; Liu B
    Clin Radiol; 2020 May; 75(5):397.e1-397.e6. PubMed ID: 31992455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease.
    Idilman IS; Tuzun A; Savas B; Elhan AH; Celik A; Idilman R; Karcaaltincaba M
    Abdom Imaging; 2015 Aug; 40(6):1512-9. PubMed ID: 25715922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative Evaluation of Pancreatic Fibrosis and Lipomatosis: Correlation of Magnetic Resonance Findings With Histology Using Magnetization Transfer Imaging and Multigradient Echo Magnetic Resonance Imaging.
    Schawkat K; Eshmuminov D; Lenggenhager D; Endhardt K; Vrugt B; Boss A; Petrowsky H; Clavien PA; Reiner CS
    Invest Radiol; 2018 Dec; 53(12):720-727. PubMed ID: 30247172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver Steatosis Categorization on Contrast-Enhanced CT Using a Fully Automated Deep Learning Volumetric Segmentation Tool: Evaluation in 1204 Healthy Adults Using Unenhanced CT as a Reference Standard.
    Pickhardt PJ; Blake GM; Graffy PM; Sandfort V; Elton DC; Perez AA; Summers RM
    AJR Am J Roentgenol; 2021 Aug; 217(2):359-367. PubMed ID: 32936018
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluation of proton density fat fraction (PDFF) obtained from a vendor-neutral MRI sequence and MRQuantif software.
    Orcel T; Chau HT; Turlin B; Chaigneau J; Bannier E; Otal P; Frampas E; Leguen A; Boulic A; Saint-Jalmes H; Aubé C; Boursier J; Bardou-Jacquet E; Gandon Y
    Eur Radiol; 2023 Dec; 33(12):8999-9009. PubMed ID: 37402003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative MRI Assessment of Pancreatic Steatosis Using Proton Density Fat Fraction in Pediatric Obesity.
    Kim J; Albakheet SS; Han K; Yoon H; Lee MJ; Koh H; Kim S; Suh J; Han SJ; Ihn K; Shin HJ
    Korean J Radiol; 2021 Nov; 22(11):1886-1893. PubMed ID: 34269534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Feasibility of Magnetic Resonance Imaging for Quantification of Liver, Pancreas, Spleen, Vertebral Bone Marrow, and Renal Cortex R2* and Proton Density Fat Fraction in Transfusion-Related Iron Overload.
    İdilman İS; Gümrük F; Haliloğlu M; Karçaaltıncaba M
    Turk J Haematol; 2016 Mar; 33(1):21-7. PubMed ID: 26376710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity.
    Covarrubias Y; Fowler KJ; Mamidipalli A; Hamilton G; Wolfson T; Leinhard OD; Jacobsen G; Horgan S; Schwimmer JB; Reeder SB; Sirlin CB
    J Magn Reson Imaging; 2019 Oct; 50(4):1092-1102. PubMed ID: 30701611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between incidental fat deposition in the liver and pancreas in asymptomatic individuals.
    Aliyari Ghasabeh M; Shaghaghi M; Khoshpouri P; Pan L; Pandy A; Pandy P; Zhong X; Kannengiesser S; Kamel IR
    Abdom Radiol (NY); 2020 Jan; 45(1):203-210. PubMed ID: 31482380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence
    Kim JW; Lee CH; Yang Z; Kim BH; Lee YS; Kim KA
    Quant Imaging Med Surg; 2022 Nov; 12(11):5251-5262. PubMed ID: 36330193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisite multivendor validation of a quantitative MRI and CT compatible fat phantom.
    Zhao R; Hernando D; Harris DT; Hinshaw LA; Li K; Ananthakrishnan L; Bashir MR; Duan X; Ghasabeh MA; Kamel IR; Lowry C; Mahesh M; Marin D; Miller J; Pickhardt PJ; Shaffer J; Yokoo T; Brittain JH; Reeder SB
    Med Phys; 2021 Aug; 48(8):4375-4386. PubMed ID: 34105167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of Dual-Energy Computed Tomography Techniques for Fat Quantification in Comparison With Magnetic Resonance Proton Density Fat Fraction and Single-Energy Computed Tomography in an Anthropomorphic Phantom Environment.
    Wu ZJ; Hippe DS; Zamora DA; Briller N; Amin KA; Kolokythas O; Mileto A
    J Comput Assist Tomogr; 2021 Nov-Dec 01; 45(6):877-887. PubMed ID: 34469903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a DIXON-based fat quantification technique for the measurement of visceral fat using a CT-based reference standard.
    Heckman KM; Otemuyiwa B; Chenevert TL; Malyarenko D; Derstine BA; Wang SC; Davenport MS
    Abdom Radiol (NY); 2019 Jan; 44(1):346-354. PubMed ID: 29946923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.