BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3719367)

  • 1. Effects of sigma agonist compounds on local cerebral glucose utilization: relationship to psychotomimetic properties.
    Kozlowski MR
    Brain Res; 1986 Jun; 376(1):190-3. PubMed ID: 3719367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychotomimetic sigma-ligands, dexoxadrol and phencyclidine block the same presynaptic potassium channel in rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1988 Sep; 403():341-53. PubMed ID: 3253423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices.
    Coan EJ; Collingridge GL
    Br J Pharmacol; 1987 Jul; 91(3):547-56. PubMed ID: 3038243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in local cerebral glucose utilization induced by phencyclidine.
    Weissman AD; Dam M; London ED
    Brain Res; 1987 Dec; 435(1-2):29-40. PubMed ID: 3427457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of carbachol-induced inositol phosphate accumulation by phencyclidine, phencyclidine-like ligands and sigma agonists involves blockade of the muscarinic cholinergic receptor: a novel dioxadrol-preferring interaction.
    Brog JS; Beinfeld MC
    J Pharmacol Exp Ther; 1990 Sep; 254(3):952-6. PubMed ID: 2203900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-dependent effects of D-N-allylnormetazocine on regional cerebral metabolic rates for glucose.
    della Puppa A; Kimes AS; London ED
    Brain Res; 1993 Feb; 603(1):38-46. PubMed ID: 8453477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the effects of the acute administration of dexoxadrol, levoxadrol, MK-801 and phencyclidine on body temperature in the rat.
    Pechnick RN; Wong CA; George R; Thurkauf A; Jacobson AE; Rice KC
    Neuropharmacology; 1989 Aug; 28(8):829-35. PubMed ID: 2674766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for separation of anesthetic activity from prototypic phencyclidine action in drug discrimination by molecular modification of dioxadrol, a phencyclidine-like dissociative anesthetic.
    Harrison EA; Rafferty MF; Rice KC; Creveling CR; Winger GD; Woods JH; Jacobson AE
    NIDA Res Monogr; 1984; 55():90-6. PubMed ID: 6100507
    [No Abstract]   [Full Text] [Related]  

  • 9. Phencyclidine-like discriminative stimulus properties of the stereoisomers of dioxadrol.
    Slifer BL; Balster RL
    Subst Alcohol Actions Misuse; 1984-1985; 5(6):273-80. PubMed ID: 6545061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of phencyclidine, etoxadrol and dexoxadrol in the pigeon.
    Leander JD
    Subst Alcohol Actions Misuse; 1982; 3(4):197-203. PubMed ID: 6132451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phencyclidine and sigma opiate receptors in brain: biochemical and autoradiographical differentiation.
    Gundlach AL; Largent BL; Snyder SH
    Eur J Pharmacol; 1985 Jul; 113(3):465-6. PubMed ID: 2995073
    [No Abstract]   [Full Text] [Related]  

  • 12. Facilitation of gamma-aminobutyric acid-induced depression by (+)PCMP and dexoxadrol in the cerebellar Purkinje neurons of the rat.
    Wang Y; Lee HK
    Neuropharmacology; 1989 Apr; 28(4):343-50. PubMed ID: 2747847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminative stimulus and reinforcing properties of etoxadrol and dexoxadrol in monkeys.
    Brady KT; Woolverton WL; Balster RL
    J Pharmacol Exp Ther; 1982 Jan; 220(1):56-62. PubMed ID: 6118431
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of the non-competitive antagonist binding site of the NMDA receptor in dark Agouti rats.
    Sun W; Wessinger WD
    Life Sci; 2004 Aug; 75(12):1405-15. PubMed ID: 15240177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the psychotomimetic benzomorphan N-allylnormetazocine (SKF 10,047) on prepulse inhibition of startle in mice.
    Halberstadt AL; Hyun J; Ruderman MA; Powell SB
    Pharmacol Biochem Behav; 2016 Sep; 148():69-75. PubMed ID: 27236030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered local cerebral glucose utilization by unilateral frontal cortical ablations in rats.
    Hosokawa S; Kato M; Aiko Y; Shima F
    Brain Res; 1985 Sep; 343(1):8-15. PubMed ID: 2864106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice.
    Itzhak Y; Alerhand S
    FASEB J; 1989 May; 3(7):1868-72. PubMed ID: 2541039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical, behavioral, and electrophysiologic actions of the selective sigma receptor ligand (+)-pentazocine.
    Steinfels GF; Alberici GP; Tam SW; Cook L
    Neuropsychopharmacology; 1988 Dec; 1(4):321-7. PubMed ID: 2855202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors.
    Zukin SR; Brady KT; Slifer BL; Balster RL
    Brain Res; 1984 Feb; 294(1):174-7. PubMed ID: 6199090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preischemic administration of flunarizine or phencyclidine reduces local cerebral glucose utilization in rat hippocampus seven days after ischemia.
    Nuglisch J; Rischke R; Krieglstein J
    Pharmacology; 1991; 42(6):333-9. PubMed ID: 1946597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.