These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37193676)

  • 1. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model.
    Yang S; Gong W; Zhou T; Sun X; Chen L; Zhou W; Li C
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ProBAPred: Inferring protein-protein binding affinity by incorporating protein sequence and structural features.
    Lu B; Li C; Chen Q; Song J
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850011. PubMed ID: 29954286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. aPRBind: protein-RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks.
    Liu Y; Gong W; Zhao Y; Deng X; Zhang S; Li C
    Bioinformatics; 2021 May; 37(7):937-942. PubMed ID: 32821925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DELPHI: accurate deep ensemble model for protein interaction sites prediction.
    Li Y; Golding GB; Ilie L
    Bioinformatics; 2021 May; 37(7):896-904. PubMed ID: 32840562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures.
    Marín-López MA; Planas-Iglesias J; Aguirre-Plans J; Bonet J; Garcia-Garcia J; Fernandez-Fuentes N; Oliva B
    Bioinformatics; 2018 Feb; 34(4):592-598. PubMed ID: 29028891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSNAPred: predicting type-specific nucleic acid binding residues via an ensemble approach.
    Nie W; Deng L
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature.
    Hu J; Bai YS; Zheng LL; Jia NX; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3635-3645. PubMed ID: 34714748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ensemble approach to predict binding hotspots in protein-RNA interactions based on SMOTE data balancing and Random Grouping feature selection strategies.
    Zhou T; Rong J; Liu Y; Gong W; Li C
    Bioinformatics; 2022 Apr; 38(9):2452-2458. PubMed ID: 35253843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-based multimodal protein-ligand binding affinity prediction.
    Xu S; Shen L; Zhang M; Jiang C; Zhang X; Xu Y; Liu J; Liu X
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38905501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein-Protein Complexes.
    Yugandhar K; Gromiha MM
    Methods Mol Biol; 2017; 1484():237-253. PubMed ID: 27787830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-stranded and double-stranded DNA-binding protein prediction using HMM profiles.
    Sharma R; Kumar S; Tsunoda T; Kumarevel T; Sharma A
    Anal Biochem; 2021 Jan; 612():113954. PubMed ID: 32946833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PreDBA: A heterogeneous ensemble approach for predicting protein-DNA binding affinity.
    Yang W; Deng L
    Sci Rep; 2020 Jan; 10(1):1278. PubMed ID: 31992738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StackDPP: a stacking ensemble based DNA-binding protein prediction model.
    Ahmed SH; Bose DB; Khandoker R; Rahman MS
    BMC Bioinformatics; 2024 Mar; 25(1):111. PubMed ID: 38486135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism.
    Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning.
    Shafiee S; Fathi A; Taherzadeh G
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2029-2040. PubMed ID: 37015594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.