These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 37193861)
1. [Sentiments in the COVID-19 crisis communication of German authorities and independent experts on Twitter : A sentiment analysis for the first year of the pandemic]. Drescher LS; Roosen J; Aue K; Dressel K; Schär W; Götz A Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2023 Jun; 66(6):689-699. PubMed ID: 37193861 [TBL] [Abstract][Full Text] [Related]
2. The Spread of COVID-19 Crisis Communication by German Public Authorities and Experts on Twitter: Quantitative Content Analysis. Drescher LS; Roosen J; Aue K; Dressel K; Schär W; Götz A JMIR Public Health Surveill; 2021 Dec; 7(12):e31834. PubMed ID: 34710054 [TBL] [Abstract][Full Text] [Related]
3. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis. Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835 [TBL] [Abstract][Full Text] [Related]
4. Verification in the Early Stages of the COVID-19 Pandemic: Sentiment Analysis of Japanese Twitter Users. Ueda R; Han F; Zhang H; Aoki T; Ogasawara K JMIR Infodemiology; 2024 Feb; 4():e37881. PubMed ID: 38127840 [TBL] [Abstract][Full Text] [Related]
5. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence. Hung M; Lauren E; Hon ES; Birmingham WC; Xu J; Su S; Hon SD; Park J; Dang P; Lipsky MS J Med Internet Res; 2020 Aug; 22(8):e22590. PubMed ID: 32750001 [TBL] [Abstract][Full Text] [Related]
6. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
7. Tracking discussions of complementary, alternative, and integrative medicine in the context of the COVID-19 pandemic: a month-by-month sentiment analysis of Twitter data. Ng JY; Abdelkader W; Lokker C BMC Complement Med Ther; 2022 Apr; 22(1):105. PubMed ID: 35418205 [TBL] [Abstract][Full Text] [Related]
8. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis. Alhuzali H; Zhang T; Ananiadou S J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046 [TBL] [Abstract][Full Text] [Related]
9. Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study. Zhang C; Xu S; Li Z; Hu S J Med Internet Res; 2021 Mar; 23(3):e26482. PubMed ID: 33617460 [TBL] [Abstract][Full Text] [Related]
10. The Saudi Ministry of Health's Twitter Communication Strategies and Public Engagement During the COVID-19 Pandemic: Content Analysis Study. Alhassan FM; AlDossary SA JMIR Public Health Surveill; 2021 Jul; 7(7):e27942. PubMed ID: 34117860 [TBL] [Abstract][Full Text] [Related]
11. Pediatric Cancer Communication on Twitter: Natural Language Processing and Qualitative Content Analysis. Lau N; Zhao X; O'Daffer A; Weissman H; Barton K JMIR Cancer; 2024 May; 10():e52061. PubMed ID: 38713506 [TBL] [Abstract][Full Text] [Related]
12. Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout. Rahmanti AR; Chien CH; Nursetyo AA; Husnayain A; Wiratama BS; Fuad A; Yang HC; Li YJ Comput Methods Programs Biomed; 2022 Jun; 221():106838. PubMed ID: 35567863 [TBL] [Abstract][Full Text] [Related]
13. Sentiment and emotion trends in nurses' tweets about the COVID-19 pandemic. Xavier T; Lambert J J Nurs Scholarsh; 2022 Sep; 54(5):613-622. PubMed ID: 35343050 [TBL] [Abstract][Full Text] [Related]
14. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach. Xue J; Chen J; Hu R; Chen C; Zheng C; Su Y; Zhu T J Med Internet Res; 2020 Nov; 22(11):e20550. PubMed ID: 33119535 [TBL] [Abstract][Full Text] [Related]
15. Sentiment Analysis of Insomnia-Related Tweets via a Combination of Transformers Using Dempster-Shafer Theory: Pre- and Peri-COVID-19 Pandemic Retrospective Study. Maghsoudi A; Nowakowski S; Agrawal R; Sharafkhaneh A; Kunik ME; Naik AD; Xu H; Razjouyan J J Med Internet Res; 2022 Dec; 24(12):e41517. PubMed ID: 36417585 [TBL] [Abstract][Full Text] [Related]
16. Seeking and Providing Social Support on Twitter for Trauma and Distress During the COVID-19 Pandemic: Content and Sentiment Analysis. Esener Y; McCall T; Lakdawala A; Kim H J Med Internet Res; 2023 Aug; 25():e46343. PubMed ID: 37651178 [TBL] [Abstract][Full Text] [Related]
17. Emotion diffusion effect: Negative sentiment COVID-19 tweets of public organizations attract more responses from followers. Yu H; Yang CC; Yu P; Liu K PLoS One; 2022; 17(3):e0264794. PubMed ID: 35259181 [TBL] [Abstract][Full Text] [Related]
18. Mpox Panic, Infodemic, and Stigmatization of the Two-Spirit, Lesbian, Gay, Bisexual, Transgender, Queer or Questioning, Intersex, Asexual Community: Geospatial Analysis, Topic Modeling, and Sentiment Analysis of a Large, Multilingual Social Media Database. Movahedi Nia Z; Bragazzi N; Asgary A; Orbinski J; Wu J; Kong J J Med Internet Res; 2023 May; 25():e45108. PubMed ID: 37126377 [TBL] [Abstract][Full Text] [Related]
19. Twitter sentiment analysis for COVID-19 associated mucormycosis. Singh M; Dhillon HK; Ichhpujani P; Iyengar S; Kaur R Indian J Ophthalmol; 2022 May; 70(5):1773-1779. PubMed ID: 35502071 [TBL] [Abstract][Full Text] [Related]
20. Exploring celebrity influence on public attitude towards the COVID-19 pandemic: social media shared sentiment analysis. White BM; Melton C; Zareie P; Davis RL; Bednarczyk RA; Shaban-Nejad A BMJ Health Care Inform; 2023 Jan; 30(1):. PubMed ID: 36810135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]