These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 37193964)

  • 1. Drug repurposing and prediction of multiple interaction types via graph embedding.
    Amiri Souri E; Chenoweth A; Karagiannis SN; Tsoka S
    BMC Bioinformatics; 2023 May; 24(1):202. PubMed ID: 37193964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel drug-target interactions via link prediction and network embedding.
    Amiri Souri E; Laddach R; Karagiannis SN; Papageorgiou LG; Tsoka S
    BMC Bioinformatics; 2022 Apr; 23(1):121. PubMed ID: 35379165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining.
    Djeddi WE; Hermi K; Ben Yahia S; Diallo G
    BMC Bioinformatics; 2023 Dec; 24(1):488. PubMed ID: 38114937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph.
    Zhu Y; Ning C; Zhang N; Wang M; Zhang Y
    BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions.
    An Q; Yu L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34373895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised graph co-contrastive learning for drug-target interaction prediction.
    Li Y; Qiao G; Gao X; Wang G
    Bioinformatics; 2022 May; 38(10):2847-2854. PubMed ID: 35561181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec.
    Li G; Zhang P; Sun W; Ren C; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Drug-Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding.
    Li J; Yang X; Guan Y; Pan Z
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph-Based Approach.
    Lou P; Fang A; Zhao W; Yao K; Yang Y; Hu J
    J Med Internet Res; 2023 Oct; 25():e45225. PubMed ID: 37862061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.