These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37194450)

  • 1. The evolutionary responses of life-history strategies to climatic variability in flowering plants.
    Boyko JD; Hagen ER; Beaulieu JM; Vasconcelos T
    New Phytol; 2023 Nov; 240(4):1587-1600. PubMed ID: 37194450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life history influences rates of climatic niche evolution in flowering plants.
    Smith SA; Beaulieu JM
    Proc Biol Sci; 2009 Dec; 276(1677):4345-52. PubMed ID: 19776076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic structure of understorey annual and perennial plant species reveals opposing responses to aridity in a Mediterranean biodiversity hotspot.
    Massante JC; Köbel M; Pinho P; Gerhold P; Branquinho C; Nunes A
    Sci Total Environ; 2021 Mar; 761():144018. PubMed ID: 33352349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent evolution of the annual life history syndrome from perennial ancestors.
    Hjertaas AC; Preston JC; Kainulainen K; Humphreys AM; Fjellheim S
    Front Plant Sci; 2022; 13():1048656. PubMed ID: 36684797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking life-history traits, ecology, and niche breadth evolution in North American eriogonoids (Polygonaceae).
    Kostikova A; Litsios G; Salamin N; Pearman PB
    Am Nat; 2013 Dec; 182(6):760-74. PubMed ID: 24231537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data.
    Carta A; Fernández-Pascual E; Gioria M; Müller JV; Rivière S; Rosbakh S; Saatkamp A; Vandelook F; Mattana E
    Ann Bot; 2022 Jul; 129(7):775-786. PubMed ID: 35303062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life history lability underlies rapid climate niche evolution in the angiosperm clade Montiaceae.
    Matthew Ogburn R; Edwards EJ
    Mol Phylogenet Evol; 2015 Nov; 92():181-92. PubMed ID: 26143714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms.
    Soria-Hernanz DF; Fiz-Palacios O; Braverman JM; Hamilton MB
    BMC Evol Biol; 2008 Dec; 8():344. PubMed ID: 19113991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancient diversification, biogeography, and the role of climatic niche evolution in the Old World cat snakes (Colubridae, Telescopus).
    Šmíd J; Göçmen B; Crochet PA; Trape JF; Mazuch T; Uvizl M; Nagy ZT
    Mol Phylogenet Evol; 2019 May; 134():35-49. PubMed ID: 30703516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis.
    Evans ME; Hearn DJ; Hahn WJ; Spangle JM; Venable DL
    Evolution; 2005 Sep; 59(9):1914-27. PubMed ID: 16261729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How is the rate of climatic-niche evolution related to climatic-niche breadth?
    Fisher-Reid MC; Kozak KH; Wiens JJ
    Evolution; 2012 Dec; 66(12):3836-51. PubMed ID: 23206141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental life history is associated with variation in rates of climatic niche evolution in a salamander adaptive radiation.
    Weaver S; Shepard DB; Kozak KH
    Evolution; 2020 Aug; 74(8):1804-1814. PubMed ID: 32323308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.
    Bonetti MF; Wiens JJ
    Proc Biol Sci; 2014 Nov; 281(1795):. PubMed ID: 25274369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide investigation reveals high evolutionary rates in annual model plants.
    Yue JX; Li J; Wang D; Araki H; Tian D; Yang S
    BMC Plant Biol; 2010 Nov; 10():242. PubMed ID: 21062446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae).
    Wang JC; Pan BR; Albach DC
    PeerJ; 2016; 4():e2333. PubMed ID: 27602296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological cold tolerance evolves faster than climatic niches in plants.
    Wen Y; Ye Q; Román-Palacios C; Liu H; Wu G
    Front Plant Sci; 2023; 14():1257499. PubMed ID: 37746020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.
    Serrano-Serrano ML; Perret M; Guignard M; Chautems A; Silvestro D; Salamin N
    BMC Evol Biol; 2015 Nov; 15():247. PubMed ID: 26555183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects.
    Kay KM; Whittall JB; Hodges SA
    BMC Evol Biol; 2006 Apr; 6():36. PubMed ID: 16638138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climatic-niche evolution follows similar rules in plants and animals.
    Liu H; Ye Q; Wiens JJ
    Nat Ecol Evol; 2020 May; 4(5):753-763. PubMed ID: 32203479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers.
    Andreasen K; Baldwin BG
    Mol Biol Evol; 2001 Jun; 18(6):936-44. PubMed ID: 11371581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.