These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37194468)
41. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin. Samkange T; D'Souza S; Obikeze K; Dube A J Pharm Pharmacol; 2019 Oct; 71(10):1497-1507. PubMed ID: 31385295 [TBL] [Abstract][Full Text] [Related]
42. PLGA/chitosan-heparin composite microparticles prepared with microfluidics for the construction of hMSC aggregates. Ge M; Sheng Y; Qi S; Cao L; Zhang Y; Yang J J Mater Chem B; 2020 Nov; 8(43):9921-9932. PubMed ID: 33034328 [TBL] [Abstract][Full Text] [Related]
43. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach. Rezvantalab S; Keshavarz Moraveji M; Khedri M; Maleki R Soft Matter; 2020 Jun; 16(22):5250-5260. PubMed ID: 32458880 [TBL] [Abstract][Full Text] [Related]
44. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396 [TBL] [Abstract][Full Text] [Related]
45. Payload Release Profile and Anti-Cancer Stem Cell Properties of Compositionally Different Polymeric Nanoparticles Containing a Copper(II) Complex. Passeri G; Northcote-Smith J; Suntharalingam K Molecules; 2023 Mar; 28(6):. PubMed ID: 36985478 [TBL] [Abstract][Full Text] [Related]
46. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels. Bányai A; Tóth EL; Varga M; Fürjes P Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164 [TBL] [Abstract][Full Text] [Related]
47. Modification of biodegradable poly(malate) and poly(lactic-co-glycolic acid) microparticles with low molecular polyethylene glycol. Yoncheva K; Lambov N; Miloshev S Drug Dev Ind Pharm; 2009 Apr; 35(4):449-54. PubMed ID: 19288298 [TBL] [Abstract][Full Text] [Related]
48. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Keohane K; Brennan D; Galvin P; Griffin BT Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950 [TBL] [Abstract][Full Text] [Related]
49. Influence of surfactant on glass transition temperature of poly(lactic- Liu G; Martinez R; Bhatnagar A; McEnnis K Soft Matter; 2023 Jul; 19(28):5371-5378. PubMed ID: 37409398 [TBL] [Abstract][Full Text] [Related]
50. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid. Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330 [TBL] [Abstract][Full Text] [Related]
51. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. Mert O; Lai SK; Ensign L; Yang M; Wang YY; Wood J; Hanes J J Control Release; 2012 Feb; 157(3):455-60. PubMed ID: 21911015 [TBL] [Abstract][Full Text] [Related]
52. Self-assembled nanomicelles using PLGA-PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. Ashjari M; Khoee S; Mahdavian AR; Rahmatolahzadeh R J Mater Sci Mater Med; 2012 Apr; 23(4):943-53. PubMed ID: 22354326 [TBL] [Abstract][Full Text] [Related]
53. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin at aqueous/organic interface. Taluja A; Bae YH Mol Pharm; 2007; 4(4):561-70. PubMed ID: 17439239 [TBL] [Abstract][Full Text] [Related]
54. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Li Y; Pei Y; Zhang X; Gu Z; Zhou Z; Yuan W; Zhou J; Zhu J; Gao X J Control Release; 2001 Apr; 71(2):203-11. PubMed ID: 11274752 [TBL] [Abstract][Full Text] [Related]
55. Facile fabrication of PEG-coated PLGA microspheres via SPG membrane emulsification for the treatment of scleroderma by ECM degrading enzymes. Ohta S; Matsuura M; Kawashima Y; Cai X; Taniguchi M; Okochi H; Asano Y; Sato S; Ito T Colloids Surf B Biointerfaces; 2019 Jul; 179():453-461. PubMed ID: 31005740 [TBL] [Abstract][Full Text] [Related]
56. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. Roberts RA; Shen T; Allen IC; Hasan W; DeSimone JM; Ting JP PLoS One; 2013; 8(4):e62115. PubMed ID: 23593509 [TBL] [Abstract][Full Text] [Related]
57. Microencapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency. Mok H; Park JW; Park TG Pharm Res; 2007 Dec; 24(12):2263-9. PubMed ID: 17929147 [TBL] [Abstract][Full Text] [Related]
58. Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier. Ozeki T; Beppu S; Mizoe T; Takashima Y; Yuasa H; Okada H Pharm Res; 2006 Jan; 23(1):177-83. PubMed ID: 16267631 [TBL] [Abstract][Full Text] [Related]
59. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
60. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Yildiz T; Gu R; Zauscher S; Betancourt T Int J Nanomedicine; 2018; 13():6961-6986. PubMed ID: 30464453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]