BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37194727)

  • 1. Semantic segmentation of retinal exudates using a residual encoder-decoder architecture in diabetic retinopathy.
    Manan MA; Jinchao F; Khan TM; Yaqub M; Ahmed S; Chuhan IS
    Microsc Res Tech; 2023 Nov; 86(11):1443-1460. PubMed ID: 37194727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Detection and Segmentation of Exudates for the Screening of Background Retinopathy.
    Kaur J; Mittal D; Malebary S; Nayak SR; Kumar D; Kumar M; Gagandeep ; Singh S
    J Healthc Eng; 2023; 2023():4537253. PubMed ID: 37483301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
    Khojasteh P; Aliahmad B; Kumar DK
    BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ensemble deep learning based approach for red lesion detection in fundus images.
    Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB
    Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives.
    Kundu S; Karale V; Ghorai G; Sarkar G; Ghosh S; Dhara AK
    J Digit Imaging; 2022 Oct; 35(5):1111-1119. PubMed ID: 35474556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exudates Segmentation using Fully Convolutional Neural Network and Auxiliary Codebook.
    Chudzik P; Al-Diri B; Caliva F; Ometto G; Hunter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():770-773. PubMed ID: 30440508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard exudates segmentation based on learned initial seeds and iterative graph cut.
    Kusakunniran W; Wu Q; Ritthipravat P; Zhang J
    Comput Methods Programs Biomed; 2018 May; 158():173-183. PubMed ID: 29544783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation.
    Arsalan M; Owais M; Mahmood T; Cho SW; Park KR
    J Clin Med; 2019 Sep; 8(9):. PubMed ID: 31514466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exudate detection in color retinal images for mass screening of diabetic retinopathy.
    Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A
    Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks.
    Wan C; Chen Y; Li H; Zheng B; Chen N; Yang W; Wang C; Li Y
    Dis Markers; 2021; 2021():6482665. PubMed ID: 34512815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets.
    Chetoui M; Akhloufi MA
    J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519
    [No Abstract]   [Full Text] [Related]  

  • 16. Micro-segmentation of retinal image lesions in diabetic retinopathy using energy-based fuzzy C-Means clustering (EFM-FCM).
    Naz H; Nijhawan R; Ahuja NJ; Saba T; Alamri FS; Rehman A
    Microsc Res Tech; 2024 Jan; 87(1):78-94. PubMed ID: 37681440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography.
    Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S
    Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep CNN with Hybrid Binary Local Search and Particle Swarm Optimizer for Exudates Classification from Fundus Images.
    Ramya J; Rajakumar MP; Maheswari BU
    J Digit Imaging; 2022 Feb; 35(1):56-67. PubMed ID: 34997375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Humming Bird Optimization-Based Hybrid CNN-RNN for Accurate Exudate Classification from Fundus Images.
    E D; S SP; R P; C BS
    J Digit Imaging; 2023 Feb; 36(1):59-72. PubMed ID: 36241944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.